Synergistic Induction of Cell Death By Combined Inhibition of PIM and AKT Kinases in Cytogenetically Defined Standard and High-Risk Multiple Myeloma

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4723-4723 ◽  
Author(s):  
Koremu Meja ◽  
Dean Smith ◽  
Laura Percy ◽  
Dennis Huszar ◽  
Barry R Davies ◽  
...  

Abstract The PIM and PI3K/Akt pathways have been studied extensively for their effects on cell growth, proliferation and survival and shown to have both distinct and overlapping functions. The PIM proteins (PIM1, 2 and 3) are serine/threonine kinases that are constitutively active, with control of PIM signaling largely at the level of transcriptional regulation. Recent studies have shown PIM2 mRNA to be highly expressed in multiple myeloma (MM) and Akt has previously been shown to be constitutively active in primary MM cells in at least 50% of samples. As results of targeting single signaling pathways can be compromised by compensatory mechanisms, we have investigated the effects of the pan-PIM inhibitor AZD1897 and the Akt inhibitor AZD5363 alone and in combination in MM, utilising a panel of cell lines representing the major MM translocation subtypes and primary patient CD138+ samples. Western blotting of a panel of human myeloma cell lines (HMCL) and primary MM samples showed that PIM2 is the major PIM isoform expressed. PIM2 protein levels were highest in HMCL with the (4;14) translocation. This finding was confirmed in primary samples where levels were quantified by densitometry (corrected for GAPDH expression) – relative levels in cases with t(4;14) 3.6±1, t(11;14) 1±0.4 and hyperdiploidy 0.7±0.3 (n=5, 6 and 4 respectively; p=0.02 by ANOVA). PIM and Akt inhibitors reduced proliferation in HMCL but had modest effects on cell death when used on their own. Combined PIM+Akt inhibition led to a more marked reduction in proliferation and produced synergistic cytotoxicity with induction of >50% cell death at 72 hours in 4 of 4 cell lines with t(4;14), 2 of 3 with t(14;16) and 2 of 4 with t(11;14). Chou-Talalay analysis confirmed synergistic effects with combination indices ranging from 0.1 to 0.8. Direct comparison of inhibitors of Akt, PI3K (GDC0941) and mTORC1/2 (KU-0063794) in combination with AZD1897 showed that the PIM+Akt inhibitor combination was most effective at inducing cell death in 8 out of 12 HMCL. As Akt is downstream of PI3K, this result may appear surprising – however, AZD5363 inhibits both Akt and has additional direct activity against p70S6K/S6K1. As previous studies have shown a PI3K-independent component to S6K signaling in some MM cells, this may at least partly explain this phenomenon. Investigation of downstream signaling showed that PIM inhibition alone led to decreased BAD S112 phosphorylation and of Akt alone to reduced FOXO3 and PRAS40 phosphorylation, confirming blockade of these validated targets at the concentrations employed. Combined PIM+Akt inhibition had enhanced effects compared with either agent alone on mTORC1 outputs, including phosphorylation of 4EBP1 and S6. Importantly, combined inhibition synergised to significantly reduce MCL1 levels in cells that showed marked cell death in response to AZD1897+AZD5363, but not in those that did not, suggesting a mechanistic basis for the cytotoxicity observed. Next we investigated the effect of PIM and Akt inhibition in 23 primary MM samples, subdivided by FISH analysis into standard risk [t(11;14), hyperdiploidy, normal] or adverse risk [t(4;14), t(14;16), gain of 1q, TP53 deleted] groups. Viable CD138+ cell survival after 72 hours in the standard risk group (n=13) was 74±4% of control for AZD1897(PIM inhibitor), 65±4% for AZD5363(Akt inhibitor) and 50±4% for the combination. The equivalent figures for the adverse risk group (n=10) were 70±4%, 57±8% and 38±6%, indicating that dual PIM and Akt targeting is effective across all clinical risk categories. We also assessed the effect of the combination of individual PIM or Akt inhibitors with other anti-MM agents. In HMCL treated with dexamethasone, enhanced effects were seen particularly for the AZD5363+Dex combination eg H929 cells, AZD5363 54% survival, Dex (10nM) 95%, both 15%; KMS28BM 59%, 90%, 28% respectively. Dual PIM+Akt inhibition could also enhance the effects of bortezomib in some HMCL eg H929 PIM+Akt 81% survival, BTZ (25nM) 73%, combination 28%. In conclusion, combined inhibition of PIM (AZD1897) and Akt (AZD5363) kinases resulted in significant anti-MM activity across all cytogenetically defined clinical risk groups, with synergistic induction of cell death. Biomarkers of activity included mTORC1 targets such as p4EBP1 and pS6 and also MCL1 levels. These results provide a rationale for clinical studies of combined PIM and Akt inhibition in MM. Disclosures Meja: AstraZeneca: Research Funding. Huszar:AstraZeneca: Employment, Equity Ownership. Davies:AstraZeneca: Employment, Equity Ownership. Khwaja:AstraZeneca: Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4440-4440
Author(s):  
Tracey Lin ◽  
Eric Lowe ◽  
Alana Lerner ◽  
Christopher J. Kirk ◽  
Shirin Arastu-Kapur

In recent years, new agents for multiple myeloma treatment (e.g., proteasome inhibitors) have become more efficacious, yet nearly all patients eventually relapse and develop refractory disease. Growing evidence suggests that clonal heterogeneity in multiple myeloma may constitute the basis for treatment resistance. Therefore, a multi-pronged approach with novel agents is needed to increase the efficacy of standard therapy and prevent or overcome resistance to standard treatments. We have undertaken a research effort to discover novel targets that potentiate the anti-tumor effects of proteasome inhibition in myeloma cells. We hypothesized that proteins that are stabilized in tumor cells following proteasome inhibition likely constitute components of both pro-apoptotic and pro-survival pathways. A mass spectrometry approach, referred to as UbiScan®, was employed to determine the identity and levels of cellular proteins modified with ubiquitin. MM cell lines (U266 and NCI-H929) were treated with either carfilzomib (CFZ) or bortezomib (BTZ) for 1 hour and the ubiquitome was profiled at 1 and 3 hours after culture in drug-free media. A concentration of 125 nM was chosen in order to reflect physiologically relevant drug and target inhibition levels and to induce cell death in ∼80% of cells after 48 hours. Approximately 400 proteins showed similar increases in ubiquitination with CFZ or BTZ. One of these proteins was PIM2, a serine/threonine proto-oncogene required for plasma cell proliferation that is highly expressed in multiple myeloma cell lines. We determined that ubiquitination on PIM2 was occurring at lysine 61, which is known to be associated with proteasomal degradation. Four hours after exposure to CFZ, PIM2 ubiquitination increased 34.6 and 24.9 fold in U266 and H929 cells, respectively, and similar changes were measured following BTZ treatment. Western blot analysis of CFZ-treated cells showed a dose-dependent accumulation of total PIM2 protein, confirming that the increase in ubiquitination correlated with protein accumulation. Next, we employed a siRNA-mediated knockdown approach to study the role of PIM2 in proteasome inhibitor mediated-cell death. Knockdown of PIM2 caused a 20% - 50% decrease in viability in both myeloma cell lines. When CFZ was added 48 hours after siRNA transfection, a significant and dose-dependent decrease in viability was observed, suggesting a synergistic interaction. Based on these results, we tested the combination of CFZ and (Z)-5-(4-propoxybenzylidene)thiazolidine-2,4-dione (PIM1/2 inhibitor), which is known to inhibit both PIM1 and PIM2. The PIM1/2 inhibitor decreased levels of phosphorylation on 4E-BP1, a downstream target, confirming its activity in cells. Chemical inhibition of PIM2 potentiated the effect of CFZ in both MM cell lines. These data suggest that the combination of targeting PIM2 and the proteasome will be efficacious in the treatment of multiple myeloma. Disclosures: Lin: Onyx Pharmaceuticals, Inc.: Employment. Lowe:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership. Lerner:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership. Kirk:Onyx Pharmaceuticals: Employment, Equity Ownership. Arastu-Kapur:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1802-1802 ◽  
Author(s):  
Andrew L MacKinnon ◽  
Mark Bennett ◽  
Matt Gross ◽  
Julie Janes ◽  
Weiqin Li ◽  
...  

Abstract Introduction Glutaminase is a mitochondrial enzyme that converts glutamine to glutamate to support several metabolic processes including amino acid and nucleotide synthesis, maintenance of cellular redox homeostasis, and the replacement of TCA cycle intermediates. Selective glutaminase inhibitors BPTES and CB-839 have anti-proliferative activity in several pre-clinical cancer models including breast, pancreatic, lung, renal, brain, leukemia, and lymphoma. Across a panel of twenty-nine multiple myeloma cell lines, we found that glutaminase inhibition with CB-839 caused tumor cell death or growth inhibition in only a subset of cell lines. To identify biomarkers that predict sensitivity to CB-839 in multiple myeloma cells, we profiled cellular metabolites, mRNA transcripts, and signaling pathways in eight multiple myeloma cell (four CB-839-sensitive and four CB-839-resistant). Results Proteomic analysis showed that CB-839 treatment suppressed the activity of the amino-acid sensing kinase mTORC1 in CB-839-sensitive cells, leading to down regulation of protein synthesis and expression of metabolic genes. Analysis of steady-state levels of intra-cellular metabolites revealed that CB-839-sensitive cells had more profound decreases in nucleotide levels and less pronounced increases in essential amino acids upon CB-839 treatment compared to CB-839-resistant cells. This suggests that the metabolic response to glutaminase inhibition is fundamentally different in sensitive versus resistant multiple myeloma cell lines. Consistent with the in vitro data, in a xenograft model with the CB-839-sensitive cell line RPMI8226, CB-839 treatment produced a 71% reduction in tumor growth that was associated with reduced levels of intratumoral nucleotides and no changes in the levels of essential amino acids. We next explored protein biomarkers that predict resistance to CB-839 and found that pyruvate carboxylase (PC) expression strongly correlated with resistance. siRNA-mediated knockdown of PC reduced TCA cycle activity and sensitized cells to CB-839 treatment, suggesting that PC can rescue cells from glutaminase inhibition by supporting anapleurotic utilization of glucose. This hypothesis was further substantiated by the observation that treatment of CB-839-resistant cells with the AKT inhibitor MK2206 led to a decrease in glucose utilization, and when combined with CB-839, produced a significant decrease in TCA cycle activity and a profound synergistic anti-proliferative response. Conclusion Multiple myeloma cells show varying anti-proliferative responses to glutaminase inhibition by CB-839. CB-839 treatment inhibits mTORC1 pathway signaling and causes decreases in nucleotides in sensitive multiple myeloma cells. Multiple myeloma cells that are resistant to glutaminase inhibition have high expression of PC, which may allow these cells to utilize glucose instead of glutamine to resupply TCA cycle intermediates. Knockdown of PC or treatment with an AKT inhibitor causes cells to utilize less glucose and sensitizes resistant cells to glutaminase inhibition with CB-839. CB-839 is currently being evaluated in Phase 1 clinical trials for the treatment of various solid and hematological cancers including multiple myeloma. We are exploring the utility of PC and mTORC1 pathway signaling biomarkers to identify multiple myeloma patients that may respond to CB-839 treatment. Disclosures MacKinnon: Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership. Gross:Calithera Biosciences: Employment, Equity Ownership. Janes:Calithera Biosciences: Employment, Equity Ownership. Li:Calithera Biosciences: Employment, Equity Ownership. Rodriquez:Calithera Biosciences: Employment, Equity Ownership. Wang:Calithera Biosciences: Employment, Equity Ownership. Zhang:Calithera Biosciences: Employment, Equity Ownership. Parlati:Calithera Biosciences: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4255-4255 ◽  
Author(s):  
Ka Tat Siu ◽  
Homare Eda ◽  
Loredana Santo ◽  
Janani Ramachandran ◽  
Miroslav Koulnis ◽  
...  

Abstract The bromodomain and extraterminal (BET) proteins recognize acetylated lysine residues on histone tails and recruit transcriptional machinery to promote gene expression. The BET proteins are attractive drug targets because they regulate the expression of MYC, BCL2 and NF- κB target genes. We investigated the therapeutic potential of CPI-0610, an inhibitor of BET proteins, currently in Phase I testing in multiple myeloma (MM). Our preliminary data show that human MM cell lines are sensitive to BET inhibition, with IC50 values of 800-1000 nM being observed in MM.1S, MM.1R, RPMI-8226, LR5, H929 and U266 cell lines in 72h culture. We further show that CPI-0610 inhibits MM cell growth in the presence of cytokines and when co-cultured with bone marrow stromal cells. CPI-0610 induces apoptosis and G1 cell cycle arrest associated with MYC downregulation. However, protein levels of BCL2, NF- κ B and MCL1 remain unchanged in MM cells upon BET inhibition. The zinc finger transcriptional factor Ikaros (IKZF1) is highly expressed in MM (GEO dataset GSE36133). It is actively transcribed in the MM.1S cell line with an active transcription start site occupied by BRD4 and MED1 (Loven J et al. Cell 2013). Interestingly, we found that CPI-0610 suppresses Ikaros and IRF4 expression at the levels of both transcription and protein in MM cells. With the use of doxycycline-inducible shRNAs targeting IKZF1, IRF4 and MYC, we identified a positive feedback mechanism that is critical for MM cell survival. Individual knockdown of IRF4, IKZF1 or MYC all lead to induction of apoptosis in MM cells. Suppression of IRF4 decreases both Ikaros and MYC protein expression, suggesting that IRF4 is upstream of both Ikaros and MYC. Downregulation of MYC protein expression is observed following IKZF1 knockdown, suggesting that MYC is downstream of Ikaros. Finally, we observed a decrease in IRF4 protein level upon MYC downregulation, implicating a feedback mechanism from MYC to IRF4. Together, these data illustrate a molecular sequence of events going from IRF4 to IKZF1 to MYC and then back to IRF4, forming a positive feedback loop in MM cells. Based on the observation that shRNA-mediated knockdown of MYC and IKZF1 are toxic to MM, we combined CPI-0610 with lenalidomide, an immunomodulatory drug which stabilizes cereblon and facilitates Ikaros degradation in MM cells (Kronke J et al., and Lu G et al., Science 2014). We observed a synergistic cytotoxic effect in the cell lines tested (MM.1S and RPMI-8226). The enhanced cytotoxic effect of the combined treatment in MM cell lines is due in part to suppression of MYC, IKZF1 and IRF4. Ongoing studies will focus on understanding the molecular mechanism underlying this synergistic combination and validating its efficacy in vivo in order to provide a rationale for clinical protocols of BET inhibitors in MM. Disclosures Mertz: Constellation Pharmaceuticals: Employment, Equity Ownership. Sims:Constellation Pharmaceuticals: Employment, Equity Ownership. Cooper:Constellation Pharmaceuticals: Employment, Equity Ownership. Raje:Celgene Corporation: Consultancy; Eli Lilly: Research Funding; Takeda: Consultancy; Amgen: Consultancy; Onyx: Consultancy; AstraZeneca: Research Funding; Novartis: Consultancy; BMS: Consultancy; Acetylon: Research Funding; Millenium: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 917-917 ◽  
Author(s):  
Xiaohui Zhang ◽  
Jing Lu ◽  
Yimin Qian ◽  
Robert Z. Orlowski

Abstract Background: BRD4, a bromodomain and extraterminal domain (BET) family member, has an important role in modulating the expression of essential oncogenes such as c-MYC, and is emerged as a promising therapeutic target in diverse cancer types. Pharmacologic BET inhibitors in development such as JQ1 and OTX015 display preclinical anti-myeloma activity, and induce preferential loss of BRD4 bound to super-enhancers leading to transcriptional repression of c-MYC. Another approach to target this pathway is through the use of bi-functional molecules, which incorporate a small molecule BRD4 binding moiety with an E3 ubiquitin ligase recognition motif, such as ARV-825 and dBET1 (Lu et al. Chem Biol. 22:755, 2015, Winter et al. Science 348:1376, 2015). These agents induce Cereblon (CRBN)-dependent BRD4 ubiquitination and then proteasome-mediated degradation, thereby also reducing downstream c-MYC protein levels. Methods: We performed pre-clinical studies in myeloma cell lines and primary samples using ARV-825 and ARV-763, which are PROTACs that target BRD4 to either the CRBN or the Von Hippel-Lindau (VHL) E3 ligases, respectively. Downstream effects were studied using viability and apoptosis assays, cell cycle profiling, and Western blotting, among others. Results: Tetrazolium assays showed that both PROTACs were able to reduce the viability of a panel of myeloma cell lines, including MM1.S, U266, RPMI 8226, ANBL-6, KAS-6/1, and OPM-2 cells, and this occurred with greater potency than was the case for the BRD4 inhibitors JQ1 or OTX015. Median inhibitory concentrations were 5.66-91.98 nM for ARV-825, and 13.22-1522 nM for ARV-763, respectively. This reduction in viability was both time- and concentration-dependent, and was associated with a reduction of cells in the S phase, and an increase in G0/G1 cells, as well as cells with sub-G0/G1 DNA content, suggesting the onset of apoptosis. Programmed cell death was indeed found to be induced based on the appearance of an increase in Annexin V-positive cells by flow cytometry, and in cleaved caspase 8, caspase 9, caspase 3, and poly-ADP-ribose polymerase by Western blotting. The latter was associated with a specific reduction in the expression levels of both BRD4 and c-MYC that did not influence the abundance of other cellular proteins that were not BRD4 targets, and in a reduction in BRD4 and c-MYC mRNA. In contrast, JQ1 and OTX015 exposure resulted in a slight increase in BRD4 protein expression and a lesser decrease of c-MYC protein. Studies of drug combinations showed that, as expected, lenalidomide and pomalidomide were antagonistic to the effects of the CRBN-targeted ARV-825 PROTAC, but these immunomodulatory drugs showed additive or synergistic effects in combination with the VHL-targeted agent ARV-763. Also as expected, bortezomib and carfilzomib reduced the ability of both ARV-825 and ARV-763 to induce BRD4 degradation, but enhanced anti-proliferative and pro-apoptotic effects were seen in a manner that was influenced by the sequence of drug addition. In studies of drug-resistant cell lines, both PROTACs were able to overcome dexamethasone, melphalan, lenalidomide, and bortezomib resistance, but cross-resistance was seen in RPMI 8226/Dox40 cells, suggesting that these compounds are substrates for P-glycoprotein, which is over-expressed in these cells. Finally, we tested BRD4 PROTACs in primary cells isolated from patients with multiple myeloma, and observed rapid loss of viability of these plasma cells. Conclusions: Taken together, our data demonstrate that BRD4 degraders have promising activity against pre-clinical models of multiple myeloma, and support their translation to the clinic for patients with relapsed/refractory disease. Additional combination and mechanistic studies, as well as data from ongoing in vivo studies, will be presented at the meeting. Disclosures Lu: Arvinas, LLC: Employment, Equity Ownership. Qian:Arvinas, LLC: Employment, Equity Ownership. Orlowski:Acetylon: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Celgene: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Onyx Pharmaceuticals: Consultancy, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5601-5601
Author(s):  
Dale Ludwig ◽  
Ruth Bryan ◽  
Wojciech Dawicki ◽  
Eileen M Geoghegan ◽  
Qing Liang ◽  
...  

Introduction: Radiolabeled CD45 antibodies have demonstrated clinical promise as targeted conditioning treatments prior to bone marrow transplant (BMT) as a better tolerated and potentially more effective alternative to harsh chemotherapy and/or total body irradiation regimens for myeloablative conditioning. CD45 is expressed on all immune cells, including hematopoietic stem cells and both precursor and mature lymphoid and myeloid cells, with an average copy number up to 200,000 molecules per cell, making it an ideal antigen for directing targeted radiation for conditioning. It is also highly expressed on most lymphomas and leukemias, and approximately 50% of multiple myeloma, further offering the potential for mediating a substantial anti-tumor effect in treated patients. We describe the preclinical development of a novel anti-CD45 antibody radio-conjugate (ARC) that harnesses the power of alpha radiation by arming the pan-CD45 antibody BC8 with Actinium-225 (225Ac). 225Ac is a potent radionuclide with high linear energy transfer (80-100 keV/μm) yet short path length (50-80 μm) to deliver significantly more lethal double strand DNA breaks per alpha track than beta particles. In addition, the use of 225Ac for targeted conditioning has advantages of safe handling and ease of use and a long 10 day half-life that enables flexibility in preparation and use. Methods and Results: To generate 225Ac-BC8, the monoclonal antibody was first conjugated with the DOTA chelator, then labeled with 225Ac, achieving a labeling efficiency typically greater than 80%. 225Ac-BC8 was subsequently purified to high radiochemical purity by column chromatography. Using human CD45+ Ramos lymphoma cell line and EL4 as negative control, 225Ac-BC8 was shown to be stable and retain selective immunoreactivity following conjugation and labeling. To evaluate the anti-tumor potency of 225Ac-BC8, two CD45+ human multiple myeloma (MM) cell lines with high or low relative CD45 antigen density, U266 and H929, respectively, (Collette, et al. 2007) were tested by cell cytotoxicity assay. Following transient exposure (4 or 12 hours) to 225Ac-BC8, the ARC demonstrated potent dose-dependent MM cell killing 72 hours post-treatment, achieving greater than 90% cytotoxicity of both cell lines. To further assess the therapeutic potential of 225Ac-BC8, its anti-tumor activity was tested in subcutaneous (s.c.) xenograft models of H929 and U266. NOD-SCID mice bearing established s.c. tumors were randomized to receive a single dose of 300 nCi of 225Ac-BC8, 300 nCi of an irrelevant radio-conjugate 225Ac-18B7, naked BC8 antibody, or no treatment control. In both models, 225Ac-BC8 exerted complete and durable tumor control for the duration of study. None of the control groups exhibited any anti-tumor effect. Studies to evaluate 225Ac-BC8 in models of CD45+ lymphoma are ongoing. Since BC8 does not cross-react with mouse CD45 and only weakly with macaque CD45, biodistribution, dosimetry and imaging analysis was performed in mice using radio-labeled anti-mouse pan-CD45 surrogate antibody 30F11. SPECT/CT imaging and biodistribution was performed with 111In-labeled 30F11. Following IV administration, 111In-CD45 (30F11) rapidly cleared from the blood and accumulated in immune system organs including spleen, bone marrow, and lymph node. Dosimetry calculations for 225Ac-CD45 (30F11) were determined for absorbed dose to target organs. Only modest uptake was noted in the kidney, but significant uptake occurred in liver, the major site for catabolism of full-length antibodies. 225Ac-CD45 (30F11) is a useful molecule to study the tolerability and myeloablative properties of 225Ac-CD45 antibody for targeted conditioning prior to donor BMT, using B6-Ly5b donor cells in B6-Ly5a mice. Results of ongoing studies will also be presented. Conclusions: The pan-CD45 antibody BC8 was shown to be efficiently conjugated and labeled with the potent alpha emitter 225Ac to mediate robust and selective killing of CD45+ MM cells and xenografts. Biodistribution analysis confirmed selective uptake into organs of the immune system including homing to BM. Supported by ongoing myeloablative/BM reconstitution studies, these preclinical data support the development of 225Ac-BC8 as a novel potent and safe targeted conditioning approach for BMT. Reference: Collette, et al., (2007). Eur. Cytokine Netw. 18:120-126. Disclosures Ludwig: Actinium Pharmaceuticals: Employment, Equity Ownership. Dawicki:Actinium Pharmaceuticals: Research Funding. Geoghegan:Actinium Pharmaceuticals: Employment. Liang:Actinium Pharmaceuticals: Employment. Seth:Actinium Pharmaceuticals: Employment, Equity Ownership. Gokhale:Actinium Pharmaceuticals: Employment. Berger:Actinium Pharmaceuticals, Inc: Employment, Equity Ownership. Reddy:Actinium Pharmaceuticals: Employment. Dadachova:Actinium Pharmaceuticals: Consultancy, Research Funding; RadImmune Therapeutics: Consultancy, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4806-4806
Author(s):  
Jeannine Silberman ◽  
Kimberly Dalbey ◽  
Claire Torre ◽  
Ebenezer David ◽  
Leif Bergsagel ◽  
...  

Abstract Backround: Dysregulation of the PI3K/Akt signal transduction pathway has been implicated in the development of a number of malignancies, including multiple myeloma (MM). This cellular signaling mechanism and its downstream targets (eg mTOR) regulate cell growth, proliferation and apoptosis. SF1126 (Semafore) is a water soluble prodrug of the pan-PI3K inhibitor, LY294002, whose anti-proliferative and pro-apoptotic activity has been well described in the literature. Preclinical studies using SF1126 in a variety of malignancies including glioma, prostate, non-small cell lung cancer, and breast cancer appear promising and have demonstrated profound antiangiogenic effects mediated through VEGF inhibition. Aim: To demonstrate in vitro anti-myeloma activity of SF1126, alone and in combination with dexamethasone, bortezomib, and melphalan and evaluate their effects on downstream targets of PI3K/Akt. Methods: MM cell lines (MM.1R, MM.1S, RPMI 8226) were treated with SF1126 (1–100uM), dexamethasone (5uM), bortezomib (5nM), melphalan (10uM) alone, and in combination. Growth inhibition following treatment was measured by MTT assay at 24 and 48 hours. Apoptosis was assessed by annexin-V binding assay using flow cytometry. Immunoblot analysis was performed to measure downstream targets of Akt including: p-PDK1 and mTOR (4E-BP1). Results: A clear dose response was established with an IC50 of 8.75uM in the MM.1R and 7.5uM in the MM.1S cell lines at 48 hours. At 24 and 48 hours, 5uM SF1126 alone resulted in 80% and 64% cell viability by MTT assay, respectively, in the MM.1R cell line. The combination of 5uM SF1126 with conventional agents was then tested in the MM.1R cell line. Combination with 5uM dexamethasone enhanced the efficacy of 5uM SF1126 by 26% at 48 hours. Combination with 10uM melphalan enhanced the efficacy of 5uM SF1126 by 20% at 24 hours. The combination with 5nM bortezomib enhanced the efficacy of 5uM SF1126 by 23% at 48 hours. Given prior experience demonstrating that short exposure to bortezomib activates Akt, we tested sequential administration of bortezomib and SF1126 in the MM.1R cell line. Optimal cell death was induced with bortezomib prior to SF1126, followed by concurrent administration. Immunoblot analysis of p-PDK1, downstream mTOR target (4E-BP1) were performed on the MM.1S cell line treated with 5, 10, 20, and 50uM SF1126 at 12 and 24 hours. At the 12 hour time point, p-PDK-1 appeared to increase, but was significantly reduced by 48 hours. A similar pattern of initial upregulation followed by reduction by 24 hours was seen with the mTOR protein 4E-BP1. Conclusion: SF1126 has dose dependent, in vitro activity in several multiple myeloma cell lines both as a single agent and in combination with dexamethasone, bortezomib, and melphalan. The addition of SF1126 to dexamethasone in a dexamethasone resistant cell line results in increased cell death, possibly by overcoming resistance mechanisms. The addition of SF1126 to bortezomib and melphalan also resulted in increased growth inhibition over either agent alone. These results warrant further study of this promising new pan-PI3K/Akt inhibitor.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1959-1959 ◽  
Author(s):  
Jatin J Shah ◽  
Jeffrey A. Zonder ◽  
Adam Cohen ◽  
Donna Weber ◽  
Sheeba Thomas ◽  
...  

Abstract Abstract 1959 Background: Kinesin Spindle Protein (KSP) is required for cell cycle progression through mitosis. Inhibition of KSP induces mitotic arrest and cell death. ARRY-520 is a potent, selective KSP inhibitor. Cancers such as multiple myeloma (MM) which depend on the short-lived survival protein MCL-1 are highly sensitive to treatment with ARRY-520. ARRY-520 shows potent activity in preclinical MM models, providing a strong rationale for its clinical investigation in this disease. Methods: This Phase 1 study was designed to evaluate the safety and pharmacokinetics (PK) of ARRY-520 administered intravenously (IV) on Day 1 and Day 2 q 2 weeks without/with granulocyte-colony stimulating factor (G-CSF). Patients (pts) with relapsed/refractory (RR) MM with 2 prior lines of therapy (including both bortezomib and an immunomodulatory agent, unless ineligible for or refusing to receive this therapy) were eligible. Cohorts of at least 3 pts were enrolled in a classical 3 + 3 dose escalation design. Pts were treated for 2 cycles (4 weeks) to evaluate safety prior to dose escalation. Results: Twenty five pts have been treated to date, with a median age of 60 years (range 44–79) and a median of 5 prior regimens (range 2–16). All pts received prior bortezomib or carfilzomib, 21 pts received prior lenalidomide, 17 pts prior thalidomide, and 18 pts had a prior stem cell transplant. Pts received ARRY-520 without G-CSF at 1 mg/m2/day (n = 3), and at 1.25 mg/m2/day (n = 7, 6 evaluable). A dose-limiting toxicity (DLT) of Grade 4 neutropenia was observed at 1.25 mg/m2/day, and this was considered the maximum tolerated dose (MTD) without G-CSF. As neutropenia was the DLT, dose escalation with prophylactic G-CSF support was initiated, at doses of 1.5 mg/m2/day (n = 7, 6 evaluable), 2.0 mg/m2/day (n = 6) and 2.25 mg/m2/day (n = 2) with G-CSF. Both the 2.0 mg/m2/day and 2.25 mg/m2/day dose levels were determined to be non-tolerated, with DLTs of febrile neutropenia (FN) (2 pts at 2.0 mg/m2/day and both pts at 2.25 mg/m2/day) and Grade 3 mucositis (both pts at 2.25 mg/m2/day). One out of 6 evaluable pts at 1.5 mg/m2/day also developed a DLT of FN. In an attempt to optimize the Phase 2 dose, an intermediate dose level of 1.75 mg/m2/day with G-CSF is currently being evaluated. The most commonly reported treatment-related adverse events (AEs) include those observed with other KSP inhibitors, such as hematological AEs (thrombocytopenia, neutropenia, anemia, leukopenia), fatigue, mucositis and other gastro-intestinal AEs. Pts displayed linear PK, a low clearance and a moderate volume of distribution, with moderate-to-high inter-individual variability in PK parameters. The median terminal elimination half life is 65 hours. The preliminary efficacy signal as a single agent is encouraging with 2 partial responses (PR) observed to date per IMWG and EBMT criteria in a heavily pretreated population (23 evaluable pts). A bortezomib-refractory pt with 8 prior lines of therapy, including a tandem transplant, treated at 1 mg/m2/day of ARRY-520 obtained a PR after Cycle 6, with urine protein and kappa light chain levels continuing to decline over time. He remains on-study after 15 months of ARRY-520 treatment. A pt with 2 prior lines of therapy, including prior carfilzomib, has obtained a PR after Cycle 8 at 2 mg/m2/day of ARRY-520, and she is currently ongoing after 4.5 months on therapy. Fifteen pts had a best response of stable disease (SD), including 1 pt with a thus far unconfirmed minimal response, and 6 had progressive disease. A total of 10 pts (43%) achieved a PR or SD lasting > 12 weeks. Several additional pts have shown other evidence of clinical activity, with decrease in paraproteins, increase in hemoglobin levels and regression of plasmacytomas. The median number of cycles is 4 (range 1–28+). Treatment activity has not correlated with any baseline characteristics or disease parameters to date. Conclusions: : The selective KSP inhibitor ARRY-520 has been well tolerated, and shows promising signs of single agent clinical activity in heavily pretreated pts with RR MM. Prophylactic G-CSF has enabled higher doses to be tolerated. No cardiovascular or liver enzyme toxicity has been reported. Enrollment is ongoing at 1.75 mg/m2/day with G-CSF support, and a planned Phase 2 part of the study will be initiated as soon as the MTD is determined. Complete Phase 1 data will be disclosed at the time of the meeting. Disclosures: Shah: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Research Funding. Off Label Use: Revlimid (lenalidomide) in combination with dexamethasone is indicated for the treatment of multiple myeloma patients who have received at least one prior therapy. Zonder:Millennium: Consultancy, Myeloma and Amyloidosis Patient Day Symposium – Corporate support from multiple sponsors for a one-day educational event, Research Funding; Celgene:; Novartis:; Proteolix: . Weber:novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; celgene- none for at least 2 years: Honoraria; millenium-none for 2 years: Honoraria; celgene, Millenium, Merck: Research Funding. Wang:Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding. Kaufman:Celgene: Consultancy, Honoraria, Research Funding; Millenium: Consultancy, Honoraria; Merck: Research Funding; Genzyme: Consultancy. Walker:Array Biopharma: Employment, Equity Ownership. Freeman:Array Biopharma: Employment, Equity Ownership. Rush:Array Biopharma: Employment, Equity Ownership. Ptaszynski:Array Biopharma: Consultancy. Lonial:Millennium, Celgene, Bristol-Myers Squibb, Novartis, Onyx: Advisory Board, Consultancy; Millennium, Celgene, Novartis, Onyx, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4084-4084 ◽  
Author(s):  
Veerendra Munugalavadla ◽  
Leanne Berry ◽  
Yung-Hsiang Chen ◽  
Gauri Deshmukh ◽  
Jake Drummond ◽  
...  

Abstract Abstract 4084 Related work from our group has shown the therapeutic utility of PIM inhibition in multiple myeloma cell lines, xenografts, and primary patient samples (Ebens A. et al., ASH 2010 submitted abstr.). In this study we provide detailed mechanistic findings to show that PIM kinase inhibition co-regulates several important elements of the PI3K/AKT/mTOR pathway, resulting in significant synergy for combination drug treatments. The PIM kinases are a family of 3 ser/thr growth factor- & cytokine-induced proteins hypothesized to have redundant survival and growth functions. GNE-652 is a pan-PIM kinase inhibitor with picomolar biochemical potencies and an excellent kinase selectivity profile. Myeloma cell lines exhibit sensitivity to single agent PIM inhibition and a striking synergy in combination with the PI3K inhibitor GDC-0941. Cells respond to this combination with cell cycle arrest and marked apoptosis in vitro. We tested a panel of selective PI3K/AKT/mTOR inhibitors and found PI3K and AKT inhibitors showed the greatest extent of synergy with GNE-652, whereas mTOR inhibitors were synergistic to a lesser extent. These results suggest that PIM signaling converges on both TORC1 and AKT to generate these differential synergies. BAD is a negative regulator of both Bcl-2 and Bcl-XL, and we were able to confirm previous reports that AKT and PIM cooperate to inactivate BAD (Datt et al., 1997; Yan et al., 2003). Pim has been shown to potentially inactivate PRAS40, a negative regulator of TORC1 (Zhang et al., 2009). We demonstrate that PIM or PI3K inhibition caused a loss of phosphorylation on PRAS40 and results in a physical association of PRAS40 and TORC1 and a decrease in phosphorylated p70S6K and S6RP. These reductions were apparent in 7 of 7 cell lines assayed and enhanced by the combination of PI3K and PIM inhibition in these cell lines. Consistent with prior reports (Hammerman et al., 2005), we show that a second node of convergence between PIM and TORC1 is 4E-BP1. Both GDC-0941 and GNE-652 treatments reduced phosphorylation of 4E-BP1 in 7 of 7 myeloma cell lines. Since dephosphorylated 4E-BP1 competes with eIF4G for the mRNA cap binding factor eIF4E, we assayed immunoprecipitates of eIF4E for the presence of eIF4G and 4E-BP1 and observed increased BP1 and decreased 4G. The combination treatment significantly enhanced the loss of 4G relative to either single agent, and importantly, even at 5× the IC50 concentrations for single agents, combination drug treatment achieved greater extent of effect than single agent treatment. Thus PI3K and PIM pathways are redundant at the level of cap-dependent translational initiation mediated by eIF4E. It has been hypothesized a subset of mRNAs are particularly sensitive to inhibition of cap-dependent translation, and that this includes a number of oncogenes such as cyclin D1. We assayed global protein synthesis in MM1.s cells using 35S-methionine and as expected we observed only a modest ≂∼f20% decrease caused by either GNE-652 or GDC-0941 and this decrease was not enhanced by combination treatment. However, we noted across 7 different myeloma cell lines, strong decreases in levels of cyclin D1 that were enhanced by combination treatment. In summary, we have identified several points at which PIM and PI3K/AKT/mTOR converge to provide synergistic apoptosis in multiple myeloma cell lines. These results provide the rationale for further preclinical development of PIM inhibitors and provide the basis for a possible clinical development plan in multiple myeloma. Disclosures: Munugalavadla: Genentech: Employment, Equity Ownership. Berry:Genentech: Employment, Equity Ownership. Chen:Genentech: Employment, Equity Ownership. Deshmukh:Genentech: Employment, Equity Ownership. Drummond:Genentech: Employment, Equity Ownership. Du:Genentech: Employment, Equity Ownership. Eby:Genentech: Employment, Equity Ownership. Fitzgerald:Genentech: Employment, Equity Ownership. S.Friedman:Genentech: Employment, Equity Ownership. E.Gould:Genentech: Employment, Equity Ownership. Kenny:Genentech: Employment, Equity Ownership. Maecker:Genentech: Employment, Equity Ownership. Moffat:Genentech: Employment, Equity Ownership. Moskalenko:Genentech: Employment, Equity Ownership. Pacheco:Genentech: Employment, Equity Ownership. Saadat:Genentech: Employment, Equity Ownership. Slaga:Genentech: Employment, Equity Ownership. Sun:Genentech: Employment, Equity Ownership. Wang:Genentech: Employment, Equity Ownership. Yang:Genentech: Employment, Equity Ownership. Ebens:Genentech Inc: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1365-1365 ◽  
Author(s):  
Lanyi Xie ◽  
Lilian Y Li ◽  
Razelle Kurzrock ◽  
Frits van Rhee ◽  
Xiang Qin ◽  
...  

Abstract Abstract 1365 Introduction Siltuximab (CNTO 328) is a chimeric, murine-human, monoclonal antibody that specifically binds human interleukin (IL)-6 with high affinity. C-reactive protein (CRP) can be a pharmacodynamic (PD) marker of IL-6 bioactivity, i.e., reductions in CRP suggest inhibition of systemic IL-6. A population mechanistic pharmacokinetic (PK)/PD model was developed to describe the relationship between siltuximab serum concentrations and CRP suppression in patients with B-cell non-Hodgkin's lymphoma (NHL), multiple myeloma (MM), or Castleman's disease (CD). Simulation was used to support the dose selection in the CD registration study and future clinical studies. Methods PK/PD data were obtained from a phase 1 clinical study examining multiple dosing regimens of siltuximab administered intravenously in patients with NHL, MM, or CD. Dosing regimens included siltuximab 2.8, 5.5, or 11 mg/kg every 2 weeks; 11 mg/kg every 3 weeks; or 5.5 mg/kg every week. Serial samples to determine serum concentration of siltuximab and serial CRP samples were collected following the first dose. NONMEM 7 was used to simultaneously fit a two-compartment PK model and an inhibitory indirect-response PD model to the observed data. Simulation of 1000 replications was then used to identify siltuximab dosage regimens that would maintain CRP suppression below the lower limit of quantification (LLOQ) of 1 mg/L. Results The mechanistic PK/PD model was able to describe the serum siltuximab and CRP concentration-time profiles. Volume of distribution and systemic clearance rate constant of siltuximab were estimated at 68.42 mL/kg and 0.0584/day, respectively. The PD parameter estimates (Kin and Kout of CRP) were 5.03 mg/L/day and 0.457/day, respectively, and were similar between the three disease types in this study. IC50was estimated at 9.73 μg/mL and was also similar between disease types. For all disease types, simulations showed that siltuximab 11 mg/kg every 3 weeks or 15 mg/kg every 4 weeks after the second dose would reduce serum CRP to below the LLOQ throughout the entire treatment period. However, lower dose intensive schedules, including a dose of 5.5 mg/kg every 2 weeks, would not reduce CRP to below the LLOQ at any time point during the treatment period. Conclusion The population PK/PD modeling and simulation support using a siltuximab dose of 11 mg/kg every 3 weeks or 15 mg/kg every 4 weeks in future clinical development studies. This dosing recommendation is supported by the observed efficacy dose-response relationship in patients with CD (J Clin Oncol 2010;28:3701–8). Disclosures: Xie: Johnson & Johnson: Employment, Equity Ownership. Li:Johnson & Johnson: Employment, Equity Ownership. Kurzrock:Johnson & Johnson: Honoraria, Research Funding. van Rhee:Johnson & Johnson: Research Funding. Qin:Johnson & Johnson: Employment, Equity Ownership. Reddy:Johnson & Johnson: Employment, Equity Ownership. Qi:Johnson & Johnson: Employment, Equity Ownership. Davis:Johnson & Johnson: Employment, Equity Ownership. Zhou:Johnson & Johnson: Employment, Equity Ownership. Puchalski:Johnson & Johnson: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4043-4043
Author(s):  
Anita K Gandhi ◽  
Herve Avet-Loiseau ◽  
Michelle Waldman ◽  
Anjan Thakurta ◽  
Sharon L Aukerman ◽  
...  

Abstract Abstract 4043 Background: Cereblon (CRBN), a component of the DDB1-CUL4A-Roc1 ubiquitin ligase complex, has been identified as a target of the immunomodulatory agents thalidomide, lenalidomide, and pomalidomide (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011; Ito et al. Science. 2010.). CRBN binding by these agents mediates their anti-proliferative effects in multiple myeloma (MM) cells (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011). However, the role of CRBN quantification as a marker for disease responsiveness or resistance to these drugs remains to be fully defined. Furthermore, it is unclear whether measuring mRNA or protein expression is the best approach for development of a quantitative CRBN expression assay. In order to define the optimal assay approach, we have studied CRBN mRNA and protein expression in MM cell lines (n=20) and MM patient samples. Methods: CRBN isoform mapping was undertaken using a nested PCR approach and Sanger sequencing. Commercially available and newly generated rabbit anti-CRBN antibodies were characterized with recombinant human CRBN protein and MM cell line extracts via western blot analysis. Results: Our data show that in addition to the transcript for full length protein (GenBank Accession NM_016302.3), in MM cells there are at least 6 alternatively spliced isoforms of CRBN as depicted in Figure 1. Five of the 6 CRBN isoforms (CRBN-003, -004, -005, -006, and -007) contain novel splice junctions not previously described. In addition, 3 of the identified transcripts (CRBN-002, -003, and -005) contain in-frame ORFs, suggesting they encode variants of CRBN protein. Of note, exon 10, which contains a portion of the IMiD-binding domain, is not present in CRBN-002. The functional consequence of CRBN-002 remains to be elucidated, but may be a marker of drug resistance. In order to measure CRBN protein levels, we developed and characterized three rabbit monoclonal antibodies to CRBN including antibody CRBN65, which has the potential to discriminate between the different CRBN protein products, including CRBN-002 by western blot analysis. Additionally, we compared 8 commercially available CRBN antibodies. Western blot analysis of cell lines with commercial and newly developed antibodies identified full length protein at 51 kD. Most commercial antibodies also identified multiple bands of other sizes which may represent CRBN protein variants; however, many are likely non-specific bands as they are larger than full-length CRBN. Conclusion: We have identified novel splice variants of CRBN from MM cell lines and primary tumor samples. The structure of the isoforms and their potential ability to be translated into several protein variants of CRBN reflect the complex regulation of the CRBN gene. These data suggest that accurate quantification of CRBN mRNA level in clinical studies may require measurement of both full-length CRBN mRNA as well as other mRNA isoforms. Currently available primers and gene expression arrays are not capable of identifying and/or resolving the complex set of CRBN isoforms present in cells. These data also demonstrate that CRBN65 is a highly specific and sensitive antibody that could be used for detection of CRBN and its key variants. Taken together, our data emphasize the importance for developing standardized reagents and assays for both mRNA and protein level measurement of CRBN before using them as markers for clinical response or resistance. Disclosures: Gandhi: Celgene Corp: Employment, Equity Ownership. Waldman:Celgene Corp: Employment, Equity Ownership. Thakurta:Celgene Corp: Employment, Equity Ownership. Aukerman:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment, Equity Ownership. Mendy:Celgene Corp.: Employment, Equity Ownership. Rychak:Celgene Corp: Employment, Equity Ownership. Miller:Celgene Corp: Employment, Equity Ownership. Gaidarova:Celgene Corp: Employment, Equity Ownership. Gonzales:Celgene Corp: Employment, Equity Ownership. Cathers:Celgene Corp: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Daniel:Celgene Corporation: Employment. Lopez-Girona:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document