Programming of Donor T Cells Using Allogeneic Delta-like Ligand 4-Positive Dendritic Cells to Reduce Gvhd but Retain GVL Activity

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 233-233
Author(s):  
Kazuhiro Mochizuki ◽  
Lijun Meng ◽  
Izumi Mochizuki ◽  
Qing Tong ◽  
Shan He ◽  
...  

Abstract Host antigen-presenting cells (APCs) are critical for inducing a potent graft-versus-leukemia (GVL) response after allogeneic hematopoietic stem-cell transplantation (allo-HSCT). In this setting, host APCs activate donor T cells to become effector T cells that recognize and react to antigens in malignant cells. However, alloreactive T cells also mediate graft-versus-host disease (GVHD), which causes significant morbidity and mortality after allo-HSCT. Many studies suggest that if alloreactive T cells have reduced capacity to expand in local tissues, they will be unable to trigger severe GVHD. Thus, it is possible that host APC induction of qualitative changes in donor T cells can potentially modify their anti-host toxicities while retaining the GVL effect. Here we report the establishment of a cellular programming approach that reduces the GVHD toxicity of donor T cells using host dendritic cells (DCs) that express high levels of Dll4 (named Dll4hi DCs). We have previously identified inflammatory Dll4hi DCs. They occurred in HSCT mice early during GVHD induction and had a greater ability than Dll4-negative DCs to induce IFN-γ and IL-17 in alloantigen-activated T cells. However, only approximately 0.03 X 105 Dll4hi DCs were recovered from one HSCT mouse. To provide adequate numbers of Dll4hi DCs for therapeutic translation, we developed a novel culture system capable of producing large number of Dll4hi DCs (about 100.0 X 105) from the bone marrow (BM) of one mouse using Flt3L and the TLR agonists lipopolysaccharide (LPS) and R848, which activate TLR4 and TLR7/8, respectively. Dll4hi DCs showed significantly different phenotype as compared to conventional DCs derived from GM-CSF-stimulated BM cells (named GM-DCs), as evidenced by expressing higher levels of Dll4, Ifnb, Il4, Il6 and Ido, and producing lower levels of iNOS and arginase I. When cultured with C57BL/6 (B6) mouse CD4+ T cells (H2b) at a T cell: DC ratio of 4:1 for 5 days, BALB/c mouse Dll4hi DCs (H2d) induced 3- to 5-fold more in frequency of alloreactive effector T cells producing high levels of IFN-γ and IL-17 compared to GM-DCs. Following transfer, allogeneic Dll4hi DC-induced CD4+ T cells were unable to mediate severe GVHD in BALB/c recipients, with all of them surviving 60 days after allo-HSCT. In contrast, both unstimulated B6 CD4+ T cells and allogeneic GM-DC-induced B6 CD4+ T cells caused lethal GVHD in all BALB/c recipients, indicating that GM-DCs could not be used for reducing the GVHD toxicity of donor CD4+ T cells. Mechanistic analysis showed that Dll4hi DC-induced CD4+ T cell recipients showed 2- to 6-fold less donor CD4+ T cells in the spleen, liver, and intestine 12 days after transplantation compared to unstimulated CD4+ T cell recipients. This reduction of Dll4hi DC-induced CD4+ T cells was associated with markedly increased apoptosis in recipient mice. IFN-γ production by Dll4hi DC-induced CD4+ T cells was essential for their anti-GVHD effects. Absence of T cell IFN-γ led to improved survival and expansion of Dll4hi DC-induced CD4+ T cells in transplant recipients and caused lethal GVHD. Finally, we demonstrated that Dll4hi DC-induced alloreactive T cells had acquired the ability to kill A20 leukemic cells in BALB/c recipients and control growth of P815 mastocytoma cells in the second model of BDF1 recipients, leading to significantly improved survival of mice receiving allo-HSCT. Furthermore, in the third mouse model of GVHD directed against minor histocompatibility antigens, B6 Dll4hi DC-induced C3H.SW CD8+ T cells produced high levels of IFN-γ, had reduced capacity to mediate GVHD in B6 recipients, but preserved GVL activity against C1498 myeloid leukemic cells. In summary, our findings demonstrate that in vitro Dll4hi DC programming represents a novel and effective platform to reduce toxicities of donor T cells. This strategy has several potential advantages compared to current and developing methods for the modification of donor T cells to reduce GVHD, including a relatively short period of culture, no requirement for T cell subset selection and no need of viral transduction. Importantly, this method may lead to new strategies that can produce large amount of leukemic cell-reactive donor T cells with decrease capability of causing severe GVHD. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 127 (25) ◽  
pp. 3270-3280 ◽  
Author(s):  
Kazuhiro Mochizuki ◽  
Lijun Meng ◽  
Izumi Mochizuki ◽  
Qing Tong ◽  
Shan He ◽  
...  

Key Points Establishing a novel Dll4hiDC-based programming approach that produces alloreactive T cells able to eliminate leukemic cells without GVHD. Dll4 induction of T-cell IFN-γ limits the expansion of Dll4hiDC-induced T cells in GVHD target tissues and development of GVHD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2003 ◽  
Vol 198 (12) ◽  
pp. 1909-1922 ◽  
Author(s):  
Souheil-Antoine Younes ◽  
Bader Yassine-Diab ◽  
Alain R. Dumont ◽  
Mohamed-Rachid Boulassel ◽  
Zvi Grossman ◽  
...  

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


2002 ◽  
Vol 76 (14) ◽  
pp. 7329-7333 ◽  
Author(s):  
Lecia Pewe ◽  
Jodie Haring ◽  
Stanley Perlman

ABSTRACT Mice infected with the murine coronavirus, mouse hepatitis virus, strain JHM (MHV) develop an immune-mediated demyelinating encephalomyelitis. Adoptive transfer of MHV-immune splenocytes depleted of either CD4 or CD8 T cells to infected mice deficient in recombination activation gene 1 resulted in demyelination. We showed previously that the process of CD8 T-cell-mediated demyelination was strongly dependent on the expression of gamma interferon (IFN-γ) by donor cells. In this report, we show, in contrast, that demyelination and lymphocyte infiltration were increased in recipients of IFN-γ−/− CD4 T cells when compared to levels in mice receiving C57BL/6 CD4 T cells.


2005 ◽  
Vol 202 (5) ◽  
pp. 697-706 ◽  
Author(s):  
Dawn M. Jelley-Gibbs ◽  
Deborah M. Brown ◽  
John P. Dibble ◽  
Laura Haynes ◽  
Sheri M. Eaton ◽  
...  

The kinetics of presentation of influenza virus–derived antigens (Ags), resulting in CD4 T cell effector and memory generation, remains undefined. Naive influenza-specific CD4 T cells were transferred into mice at various times after influenza infection to determine the duration and impact of virus-derived Ag presentation. Ag-specific T cell responses were generated even when the donor T cells were transferred 3–4 wk after viral clearance. Transfer of naive CD4 T cells during early phases of infection resulted in a robust expansion of highly differentiated effectors, which then contracted to a small number of memory T cells. Importantly, T cell transfer during later phases of infection resulted in a modest expansion of effectors with intermediate phenotypes, which were capable of persisting as memory with high efficiency. Thus, distinct stages of pathogen-derived Ag presentation may provide a mechanism by which T cell heterogeneity is generated and diverse memory subsets are maintained.


2003 ◽  
Vol 71 (3) ◽  
pp. 1083-1090 ◽  
Author(s):  
Hélène Saklani-Jusforgues ◽  
Elisabeth Fontan ◽  
Neirouz Soussi ◽  
Geneviève Milon ◽  
Pierre L. Goossens

ABSTRACT Listeria monocytogenes is considered as a potential live bacterial vector, particularly for the induction of CD8 T cells. The CD4 T-cell immune response triggered after enteral immunization of mice has not yet been thoroughly characterized. The dynamics of gamma interferon (IFN-γ)- and interleukin-4 (IL-4)-secreting CD4 T cells were analyzed after priming through intragastric delivery of an attenuated ΔactA recombinant L. monocytogenes strain expressing the Leishmania major LACK protein; a peptide of this protein, LACK158-173 peptide (pLACK), is a well-characterized CD4 T-cell target in BALB/c mice. Five compartments were monitored: Peyer's patches, mesenteric lymph nodes (MLN), spleen, liver, and blood. A single intragastric inoculation of ΔactA-LACK-LM in BALB/c mice led to colonization of the MLN and spleen at a significant level for at least 3 days. Efficient priming of IFN-γ-secreting pLACK-reactive CD4 T cells was observed in all tested compartments. Interestingly, IL-4-secreting pLACK-reactive CD4 T cells were detectable at day 6 or 7 only in blood and liver. The absence of translocation of viable bacteria through the intestinal epithelium after further ΔactA-LACK-LM inoculations was concomitant with the absence of an increase in the level of IFN-γ secreted by the MLN, blood, and splenic pLACK-reactive Th1 T cells, although the levels remained significantly above the basal level. No change in this population size was detected in the spleen. However, an increase in the number of intragastric inoculations had a clinical beneficial effect in L. major-infected BALB/c mice. L. monocytogenes thus presents the potential of an efficient vector for induction of CD4 T cells when administered by the enteral route.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 592-592
Author(s):  
Vanessa M. Hubbard ◽  
Jeffrey M. Eng ◽  
Kartono H. Tjoe ◽  
Teresa Ramirez-Montagut ◽  
Stephanie J. Muriglan ◽  
...  

Abstract Inducible costimulator (ICOS) is a member of the B7 family that is expressed on activated and memory T cells and is involved in the regulation of TH1 and TH2 effector cytokine production after CD3/TCR stimulation. Studies with ICOS inhibition or ICOS−/− recipients have demonstrated prolonged allograft survival after heart or liver transplantation in animal models. To study the role of ICOS expression on alloreactive T cells in graft-versus-host disease (GVHD), we used allogeneic MHC class I and II disparate hematopoietic stem cell transplantation (allo-HSCT) models. We first analyzed the expression of ICOS by transferring CFSE-labeled donor T cells into irradiated allogeneic recipients and observed an increased expression of ICOS on alloreactive T cells compared to non-alloreactive T cells. We then studied B6-ICOS−/− alloreactive T cells and found intact proliferation in vivo (as determined by adoptive transfer of CFSE labeled T cells and donor T cell numbers in the spleen of allo-HSCT recipients), intact cytotoxicity, intact up regulation of activation markers, but decreased IFN-γ production in vitro. We then performed GVHD experiments in two models with full MHC class I and II disparity and observed significantly less GVHD morbidity and mortality in recipients of ICOS−/− donor T cells. Furthermore, histopathological analysis demonstrated less GVHD in all target organs (skin, liver, small bowel and large bowel) of recipients of ICOS−/− splenic T cells compared to recipients of wild type T cells. We harvested target organs (spleen, thymus, liver and gut) on days 7, 14, and 21 to examine donor T cell content (naïve and activated T cells) and found no significant difference in the total T cell numbers and subpopulations. Interestingly, in GVHD/graft-versus-tumor (GVT) experiments, ICOS−/− donor T cells displayed intact GVT activity, while their GVH activity was diminished. We then tested the levels of IFN-γ in the sera of mice undergoing GVHD and observed decreased serum levels in recipients of B6-ICOS−/− T cells. In conclusion, alloreactive ICOS−/− donor T cells display less GVHD morbidity and mortality due to decreased IFN-γ production, while proliferation, infiltration and GVT activity remain intact. These data suggests that strategies to inhibit ICOS could be useful for the prevention and/or treatment of GVHD in recipients of an allo-HSCT.


2003 ◽  
Vol 198 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Sayuri Yamazaki ◽  
Tomonori Iyoda ◽  
Kristin Tarbell ◽  
Kara Olson ◽  
Klara Velinzon ◽  
...  

An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.


2000 ◽  
Vol 192 (9) ◽  
pp. 1213-1222 ◽  
Author(s):  
Helmut Jonuleit ◽  
Edgar Schmitt ◽  
Gerold Schuler ◽  
Jürgen Knop ◽  
Alexander H. Enk

The functional properties of dendritic cells (DCs) are strictly dependent on their maturational state. To analyze the influence of the maturational state of DCs on priming and differentiation of T cells, immature CD83− and mature CD83+ human DCs were used for stimulation of naive, allogeneic CD4+ T cells. Repetitive stimulation with mature DCs resulted in a strong expansion of alloreactive T cells and the exclusive development of T helper type 1 (Th1) cells. In contrast, after repetitive stimulation with immature DCs the alloreactive T cells showed an irreversibly inhibited proliferation that could not be restored by restimulation with mature DCs or peripheral blood mononuclear cells, or by the addition of interleukin (IL)-2. Only stimulation of T cells with mature DCs resulted in an upregulation of CD154, CD69, and CD70, whereas T cells activated with immature DCs showed an early upregulation of the negative regulator cytotoxic T lymphocyte–associated molecule 4 (CTLA-4). These T cells lost their ability to produce interferon γ, IL-2, or IL-4 after several stimulations with immature DCs and differentiated into nonproliferating, IL-10–producing T cells. Furthermore, in coculture experiments these T cells inhibited the antigen-driven proliferation of Th1 cells in a contact- and dose-dependent, but antigen-nonspecific manner. These data show that immature and mature DCs induce different types of T cell responses: inflammatory Th1 cells are induced by mature DCs, and IL-10–producing T cell regulatory 1–like cells by immature DCs.


Sign in / Sign up

Export Citation Format

Share Document