In Vivo Genome Editing in Neonatal Mouse Liver Preferentially Utilizes Homology Directed Repair

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4422-4422 ◽  
Author(s):  
Xavier M. Anguela ◽  
Rajiv Sharma ◽  
Yannick Doyon ◽  
Thomas Wechsler ◽  
David Paschon ◽  
...  

Abstract Genome editing has the potential to provide long-term therapeutic gene expression in vivo. We have previously demonstrated efficient editing in a mouse model of hemophilia B through liver-directed adeno-associated viral vector (AAV) delivery of a zinc finger nuclease (ZFN) pair and a corrective donor. We determined that homology is not necessary to achieve efficient levels of genome editing in adult mice, consistent with the fact that quiescent cells, including adult hepatocytes, are not thought to be amenable to homology directed repair (HDR). As a consequence of the donor containing a splice acceptor, both HDR and homology independent vector integration are capable of driving human factor 9 (hF.IX) expression. In this study we sought to determine whether hF.IX expression in mice treated as neonates, undergoing substantial hepatocyte proliferation, is predominantly the result of HDR or homology independent genome editing. Provided the efficacy is not substantially reduced, an HDR dependent approach would impose additional constraints on targeting. Treatment of neonatal hF9mut mice (harboring the ZFN target site) with 1x1011 vg AAV8-ZFN and 5x1011 vg AAV8-Donor via retro-orbital injection resulted in a drastic difference in hF.IX expression between donors with and without homology 10 weeks post injection (Homology: 1531 ± 174.5 ng/mL vs. No-homology: 146.1 ± 5.8 ng/mL; n=12 and 7, respectively). We next asked whether HDR could be stimulated even more specifically through the induction of DNA single strand breaks at the target site. We treated neonatal mice with homologous or non-homologous donors, as well as ZFNs or ZFNickases (in which one FokI nuclease domain was inactivated with the D450A mutation). ZFNickases were indeed active, resulting in ~250 ng/mL hF.IX 4 weeks post injection (Figure 1). Interestingly, we could not detect hF.IX in mice treated with ZFNickase and no-homology donor (LOD: 15ng/mL). To rule out the possibility that this was simply due to the lower efficacy of ZFNickases compared to ZFNs, we increased the ZFNickase dose 4 fold. Four weeks post treatment, we observed substantial levels of hF.IX in mice treated with homologous donor (2041 ± 269 ng/mL) and were again unable to detect hF.IX in mice treated with the non-homologous donor (n=10 and 7, respectively). These data point to homology directed repair as the primary mechanism of protein production for genome editing in neonatal mouse liver, and suggest improvements in both efficacy and specificity can be made through deeper understanding of the molecular requirements of this approach. Figure 1. Figure 1. Disclosures Anguela: Spark Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Doyon:Sangamo BioSciences: Employment. Wechsler:Sangamo BioSciences: Employment. Paschon:Sangamo BioSciences: Employment. Davidson:Spark Therapeutics: Consultancy. Gregory:Sangamo BioSciences: Employment. Holmes:Sangamo BioSciences: Employment. High:Spark Therapeutics: Employment, Equity Ownership, Patents & Royalties.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 659-659
Author(s):  
Kevin A. Goncalves ◽  
Megan D. Hoban ◽  
Jennifer L. Proctor ◽  
Hillary L. Adams ◽  
Sharon L. Hyzy ◽  
...  

Abstract Background. The ability to expand human hematopoietic stem cells (HSCs) has the potential to improve outcomes in HSC transplantation and increase the dose of gene-modified HSCs. While many approaches have been reported to expand HSCs, a direct comparison of the various methods to expand transplantable HSCs has not been published and clinical outcome data for the various methods is incomplete. In the present study, we compared several small molecule approaches reported to expand human HSCs including HDAC inhibitors, the aryl hydrocarbon antagonist, SR1, and UM171, a small molecule with unknown mechanism, for the ability to expand phenotypic HSC during in vitro culture and to expand cells that engraft NSG mice. Although all strategies increased the number of phenotypic HSC (CD34+CD90+CD45RA-) in vitro, SR1 was the most effective method to increase the number of NOD-SCID engrafting cells. Importantly, we found that HDAC inhibitors and UM171 upregulated phenotypic stem cell markers on downstream progenitors, suggesting that these compounds do not expand true HSCs. Methods. Small-molecules, SR1, HDAC inhibitors (BG45, CAY10398, CAY10433, CAY10603, Entinostat, HC Toxin, LMK235, PCI-34051, Pyroxamide, Romidepsin, SAHA, Scriptaid, TMP269, Trichostatin A, or Valproic Acid) and UM171 were titrated and then evaluated at their optimal concentrations in the presence of cytokines (TPO, SCF, FLT3L, and IL6) for the ability to expand human mobilized peripheral blood (mPB)-derived CD34+ cells ex vivo . Immunophenotype and cell numbers were assessed by flow cytometry following a 7-day expansion assay in 10-point dose-response (10 µM to 0.5 nM). HSC function was evaluated by enumeration of colony forming units in methylcellulose and a subset of the compounds were evaluated by transplanting expanded cells into sub-lethally irradiated NSG mice to assess engraftment potential in vivo . All cells expanded with compounds were compared to uncultured or vehicle-cultured cells. Results. Following 7 days of expansion, SR1 (5-fold), UM171 (4-fold), or HDAC inhibitors (>3-35-fold) resulted in an increase in CD34+CD90+CD45RA- number relative to cells cultured with cytokines alone; however, only SR1 (18-fold) and UM171 (8-fold) demonstrated enhanced engraftment in NSG mice. Interestingly, while HDAC inhibitors and UM171 gave the most robust increase in the number and frequency of CD34+CD90+CD45RA- cells during in vitro culture, these methods were inferior to SR1 at increasing NSG engrafting cells. The increase in CD34+CD90+CD45RA- cells observed during in vitro culture suggested that these compounds may be generating a false phenotype by upregulating CD90 and down-regulating CD45RA on progenitors that were originally CD34+CD90-CD45RA+. We tested this hypothesis by sorting CD34+CD90-CD45RA+ cells and culturing these with the various compounds. These experiments confirmed that both HDAC inhibitors (33-100 fold) and UM171 (28-fold) led to upregulation of CD90 on CD34+CD90-CD45RA+ cells after 4 days in culture. Since approximately 90% of the starting CD34+ cells were CD90-, these data suggest that most of the CD34+CD90+CD45RA- cells in cultures with HDAC inhibitors and UM171 arise from upregulation of CD90 rather than expansion of true CD34+CD90+CD45RA- cells and may explain the disconnect between in vitro HSC phenotype and NSG engraftment in vivo . This was further confirmed by evaluation of colony forming unit frequency of CD34+CD90-CD45RA+ cells after culture with compounds. Conclusions. We have showed that AHR antagonism is optimal for expanding functional human HSCs using the NSG engraftment model. We also demonstrated that UM171 and HDAC inhibitors upregulate phenotypic HSC markers on downstream progenitors. This could explain the discrepancy between impressive in vitro phenotypic expansion and insufficient functional activity in the NSG mouse model. Therefore, these data suggest caution when interpreting in vitro expansion phenotypes without confirmatory functional transplantation data, especially as these approaches move into clinical trials in patients. Disclosures Goncalves: Magenta Therapeutics: Employment, Equity Ownership. Hoban: Magenta Therapeutics: Employment, Equity Ownership. Proctor: Magenta Therapeutics: Employment, Equity Ownership. Adams: Magenta Therapeutics: Employment, Equity Ownership. Hyzy: Magenta Therapeutics: Employment, Equity Ownership. Boitano: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2744-2744
Author(s):  
Xiaochuan Chen ◽  
Rhona Stein ◽  
Chien-Hsing Chang ◽  
David M. Goldenberg

Abstract Abstract 2744 Poster Board II-720 Introduction: The humanized anti-CD74 monoclonal antibody (mAb), milatuzumab, is in clinical evaluation as a therapeutic mAb for non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and multiple myeloma after preclinical evidence of activity in these tumor types. In addition to its expression in malignant cells, CD74 is also expressed in normal B cells, monocytes, macrophages, Langerhans cells, follicular and blood dendritic cells. A question therefore arises whether milatuzumab is toxic to or affects the function of these immune cells. This has important implications, not only for safe therapeutic use of this mAb, but also for its potential application as a novel delivery modality for in-vivo targeted vaccination. Methods: We assessed the binding profiles and functional effects of milatuzumab on human antigen-presenting cell (APC) subsets. Studies on the effect of milatuzumab on antigen presentation and cross-presentation are included. In addition, binding and cytotoxicity on a panel of leukemia/lymphoma cell lines and CLL patient cells were tested to demonstrate the range of malignancies that can be treated with this mAb. Results: Milatuzumab bound efficiently to different subsets of blood dendritic cells, including BDCA-1+ myeloid DCs (MDC1), BDCA-2+ plasmacytoid DCs (PDC), BDCA-3+ myeloid DCs (MDC2), B lymphocytes, monocytes, and immature DCs derived from human monocytes in vitro, but not LPS-matured DCs, which correlated well with their CD74 expression levels. In the malignant B-cells tested, milatuzumab bound to the surface of 2/3 AML, 2/2 mantle cell (MCL), 4/4 ALL, 1/1 hairy cell leukemia, 2/2 CLL, 7/7 NHL, and 5/6 multiple myeloma cell lines, and cells of 4/6 CLL patient specimens. Significant cytotoxicity (P<0.05) was observed in 2/2 MCL, 2/2 CLL, 3/4 ALL, 1/1 hairy cell, 2/2 NHL, and 2/2 MM cell lines, and 3/4 CD74-positive CLL patient cells, but not in the AML cell lines following incubation with milatuzumab. In contrast, milatuzumab had minimal effects on the viability of DCs or B cells that normally express CD74. The DC maturation and DC-mediated T-cell functions were not altered by milatuzumab treatment, which include DC-induced T-cell proliferation, CD4+CD25+FoxP3+ Treg expansion, and CD4+ naïve T-cell polarization. Moreover, milatuzumab had little effect on CMV-specific CD8- and CD8+ T cell interferon-g responses of peripheral blood mononuclear cells stimulated in vitro with CMV pp65 peptides or protein, suggesting that milatuzumab does not influence antigen presentation or cross-presentation. Conclusion: These results demonstrate that milatuzumab is a highly specific therapeutic mAb against B-cell malignancies with potentially minimal side effects. It also suggests that milatuzumab may be a promising novel delivery mAb for in vivo targeted vaccinations, given its efficient binding, but lack of cytotoxicity and functional disruption on CD74-expressing normal APCs. (Supported in part by NIH grant PO1-CA103985.) Disclosures: Chang: Immunomedics Inc.: Employment, Equity Ownership, Patents & Royalties. Goldenberg:Immunomedics, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 191-191
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 191 A series of salicylamides, fully synthetic cationic foldamers designed to disrupt the binding of the pentasaccharide unit of heparin to antithrombin III, were found to be potent neutralizers of the activity of unfractionated heparin (UFH) and low molecular weight heparins (LMWHs). A compound from this series, PMX-60056, is currently in human clinical trials for neutralization of UFH and LMWHs. PMX-60056 potently neutralizes UFH and LMWHs but is not as efficacious versus fondaparinux (FPX). The goal of the present research was to 1) identify back-up compounds to optimize activity against the LMWHs and FPX and 2) mitigate the hemodynamic effects commonly associated with protamine and observed clinically with PMX-60056 in the absence of heparin. Compounds were first tested for their ability to neutralize the anticoagulant activity of enoxaparin (ENX), tinzaparin or FPX in an in vitro amidolytic assay for factor Xa activity. While only minor improvements were observed in the neutralization of ENX and tinzaparin, compounds were identified which had 6 to 40 fold increase in activity against FPX (EC50s of 0.09 – 0.58 uM) in comparison to PMX-60056 (EC50 3.64 uM). Activated partial thromboplastin time (aPTT) assays demonstrated that these compounds maintained activity against heparin in a plasma based clotting assay. Rotation thromboelastometry (ROTEM) was used to show that these compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were tested in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). Lead back-up compounds were not cytotoxic (or hemolytic) at >100 fold concentrations over their EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Five compounds were selected for further studies based on their in vitro profiles. The in vivo efficacy of these compounds was evaluated in a rat coagulation model for neutralization of ENX (2 mg/kg). Three minutes following IV dosing with ENX, either saline, protamine or one of the five salicylamide test compounds was administered. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. Three of the five salicylamides (PMX640, PMX686 and PMX747) were more efficacious than protamine; with PMX640 and PMX686 neutralizing 91 – 100% and PMX747 neutralizing 78–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. In a second in vivo model, PMX747 and PMX686 (2 mg/kg) completely neutralized the prolonged bleeding times in a rat tail bleeding model caused by treatment with 2 mg/kg ENX. Significantly, with protamine at a 5 mg/kg dosage, only partial restoration was obtained. Protamine routinely causes a transient decrease in blood pressure upon dosing, and hemodynamic effects have also been observed with PMX-60056 in human subjects in the absence of heparin. To address this issue, structural features that have successfully reduced hemodynamic liabilities in other cationic compounds were incorporated into the design of the back-up salicylamides. The effect of compounds on blood pressure and heart rate was measured via arterial catheters in rats following IV administration of protamine, PMX-60056, or test agents. As expected, in rats treated with a low dose of UFH (50 u/kg) and high dosages of antagonist, both protamine and PMX-60056 displayed transient or prolonged blood pressure reductions at 8 and 16 mg/kg, respectively. However, the lead back-up salicylamides, PMX640, PMX686 and PMX747 had little to no effect on blood pressure at these same dosages. In conclusion, we have discovered compounds in the salicylamide series that have greater efficacy versus LMWHs and that have significantly reduced hemodynamic liabilities in rats as compared to protamine. Furthermore, these compounds potently neutralize FPX activity in vitro; exceeding the activity of protamine and our clinical lead salicylamide, PMX-60056, by up to 40 fold. Thus we have been able to optimize the salicylamide series, identifying compounds that offer the potential to greatly improve upon the current clinical heparin antagonist, protamine, in respect to both activity against LMWHs and side effect profile. Disclosures: Scott: PolyMedix Inc.: Employment, Equity Ownership. Costanzo:PolyMedix Inc.: Employment, Equity Ownership. Freeman:PolyMedix Inc.: Employment, Equity Ownership. Kavash:PolyMedix Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3287-3287 ◽  
Author(s):  
Ivana Gojo ◽  
Alison Walker ◽  
Maureen Cooper ◽  
Eric J Feldman ◽  
Swaminathan Padmanabhan ◽  
...  

Abstract Abstract 3287 Background: Dinaciclib is a potent and selective inhibitor of the CDKs 1, 2, 5, and 9 that has demonstrated anti-tumor activity against both myeloid and lymphoid leukemia cell lines in vitro and human tumor xenografts in vivo. Methods: A randomized, multicenter, open-label phase 2 study of dinaciclib 50 mg/m2 administered by 2-hour i.v. infusion once every 21 days was initiated with the goal of assessing its efficacy and safety in patients (pts) with advanced acute myeloid (AML, ≥60 years old) or lymphoid (ALL, ≥18 years old) leukemia. AML pts were randomized between dinaciclib and gemtuzumab ozogamicin (GO) with cross-over to dinaciclib if no response to GO, while ALL pts only received dinaciclib. Intra-patient dose escalation of dinaciclib to 70 mg/m2 in cycle 2 was allowed. Twenty-six pts were treated on study (20 AML, 6 ALL). Data on 14 AML (2 cross-over from GO) and 6 ALL pts treated with dinaciclib are presented. Their median age was 70 (range 38–76) years and 70% were male. Sixteen pts were refractory and 4 pts had relapsed after a median of one (range 1–4) chemotherapy regimens. Four AML pts had complex karyotypes (≥3 abnormalities), 2 monosomy 7, 2 trisomy 8, 1 der (1:7)(q10;p10), 1 trisomy 21, 1 deletion 9q, and 3 had normal karyotype. Two ALL pts had t(9;22). Response: Anti-leukemia activity was observed in 60% of pts. Ten of 13 pts with circulating blasts (7/7 AML and 3/6 ALL) had >50% and 6 pts (4 AML, 2 ALL) >80% decrease in the absolute blast count (ABC) within 24 hours of the first dinaciclib dose. An additional pt had a 29% decrease in ABC. The median pre-treatment ABC was 1085 (range 220–9975) and the median ABC nadir was 169 (range 0–1350). The median duration of blast nadir was 6 days (range 2–23). A representative graph from an AML patient (below) shows a rapid decrease of circulating blasts and WBC after treatment, followed by a gradual recovery. Two patients had >50% reduction of marrow blasts (35% on d1 to 17% on d 42 in an AML pt; 81% on d1 to 27% on d 21 in an ALL pt). However, no objective responses by International Working Group criteria were observed. The median number of treatment cycles was 1 (range 1–5), with 10 pts receiving more than one cycle of treatment. Eight pts were treated with dinaciclib 70 mg/m2 starting in cycle 2. Toxicity: Treatment related AE's occurring in >30% of pts included diarrhea, nausea, vomiting, anemia, elevated AST, fatigue, leukopenia, hypocalcemia, and hypotension. The most common CTCAE v3 treatment-related grade 3 and 4 toxicities, occurring in 3 or more pts, were anemia, leukopenia, febrile neutropenia, thrombocytopenia, fatigue, increased AST, and tumor lysis syndrome (TLS). Laboratory evidence of tumor lysis in cycle 1, using the Cairo-Bishop criteria, was seen in 6 pts in addition to 3 pts with clinical TLS (JCO 2008;26:2767). Hyperacute TLS requiring hemodialysis occurred in one pt with AML, who died of acute renal failure. Subsequently, all pts were aggressively managed to prevent and treat TLS (hospitalization, hydration, allopurinol, rasburicase, oral phosphate binder administration, and early management of hyperkalemia). An additional 9 pts died on study, 8 pts from leukemia progression and 1 pt from intracranial bleed due to disease-related thrombocytopenia. Pharmacodynamics: Pre-treatment, 4 and 24 hrs post end-of-infusion samples of circulating leukemic blasts were obtained from 1 AML and 3 ALL pts. By Western blot, post-treatment decrease in Mcl-1 and increase in PARP cleavage were seen in all 4 pts at 4 hrs post-treatment, confirming that in vivo inhibition of CDKs was achieved, but recovery of Mcl-1 at 24 hrs was observed in all 4 pts, suggesting that inhibition was lost at 24 hrs. Decline in p-Rb was observed in 1 pt, while 2 pts had almost undetectable p-Rb levels at baseline. Conclusion: Dinaciclib showed anti-leukemia activity in this heavily pre-treated patient population. TLS was a notable toxicity, but was manageable in most pts with aggressive prophylaxis, monitoring and treatment. Early blast recovery and short duration of nadir observed on this study, combined with PK data showing a short t1/2 (1.5-3.3 hours) for dinaciclib and PD data demonstrating rapid reexpression of Mcl-1, support either use of longer infusion schedules (currently explored in solid tumors) or more frequent drug administration. Further exploration of dinaciclib dose and schedules in AML and ALL is planned. Disclosures: Gojo: Merck & Co.: Research Funding. Off Label Use: SCH 727965 (dinaciclib) is an investigational drug. Padmanabhan:Schering-Plough: Consultancy; Merck & Co.: Research Funding. Small:Merck & Co.: Employment, Equity Ownership. Zhang:Merck & Co.: Employment. Sadowska:Merck & Co.: Research Funding. Bannerji:Merck & Co.: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Naoya Mimura ◽  
Mariateresa Fulciniti ◽  
Gullu Gorgun ◽  
Yu-Tzu Tai ◽  
Diana D. Cirstea ◽  
...  

Abstract Abstract 133 Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response (UPR). Therefore blockade of UPR could provide a novel therapeutic option in MM. Upon UPR, inositol-requiring enzyme 1α (IRE1α) is activated by auto-phosphorylation, resulting in activation of its endoribonuclease domain to cleave XBP1 mRNA from XBP1 unspliced form (XBP1u: inactive) to generate the XBP1 spliced form (XBP1s: active). XBP1s protein in turn regulates genes responsible for protein folding and degradation, playing a pro-survival signaling role in the UPR. In this study, we specifically examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM. We first examined the biologic significance of IRE1α by knockdown using lentiviral shRNA and observed significant growth inhibition in IRE1α knockdown cells. We next examined the impact of inhibition of XBP1 splicing using a novel small molecule IRE1α endoribonuclease domain inhibitor MKC-3946 (MannKind, Valencia CA). MKC-3946 blocked not only the basal level, but also inducible (by tunicamycin) XBP1s, evidenced by RT-PCR analysis in RPMI8226 cells, without affecting phosphorylation of IRE1α. Importantly, MKC-3946 also inhibited XBP1s in primary tumor cells from MM patients. We also confirmed functional inhibition of XBP1s, with target genes including SEC61A1, p58IPK, and ERdj4 downregulated by MKC-3946 treatment. Importantly, MKC-3946 triggered growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Furthermore, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG in RPMI8226 and INA6 cells, as well as primary tumor cells from MM patients. Both bortezomib and 17-AAG induced ER stress with XBP1s, which was markedly blocked by MKC-3946. Moreover, apoptosis induced by bortezomib or 17-AAG was enhanced by MKC-3946, associated with increased CHOP mRNA and protein, a proapoptotic factor triggered by ER stress. We next demonstrated that XBP1s was induced by bortezomib in INA6 cells co-cultured with bone marrow (BM) stromal cells, which was inhibited by MKC-3946, associated with enhanced cytotoxicity induced by the combination. Finally, MKC-3946 inhibited XBP1s in a model of in vivo ER stress induced by tunicamycin. To evaluate the anti-MM effect of MKC-3946, we used the subcutaneous RPMI8226 xenograft model in mice. MKC-3946 significantly reduced MM tumor growth in the treatment versus control group, associated with prolonged overall survival. We also confirmed that MKC-3946 treatment significantly inhibited XBP1s in excised tumors, assessed by RT-PCR. In order to examine the activity of MKC-3946 on MM cell growth in the context of the human BM microenvironment in vivo, we used the SCID-hu model, in which INA6 cells are directly injected into a human bone chip implanted subcutaneously in SCID-mice. MKC-3946 treatment significantly inhibited tumor growth compared with vehicle control. Moreover, XBP1s in excised tumor cells was inhibited, evidenced by RT-PCR. In conclusion, these data demonstrate that blockade of XBP1s by MKC-3946 triggers MM cell growth inhibition in vivo and prolongs host survival. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential novel therapeutic option in MM. Disclosures: Tam: MannKind Corporation: Employment, Equity Ownership. Zeng:MannKind Corporation: Employment, Equity Ownership. Patterson:MannKind Corporation: Employment, Equity Ownership. Richardson:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; MannKind: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1049-1049
Author(s):  
Joseph A. Jakubowski ◽  
Chunmei Zhou ◽  
David S. Small ◽  
Kenneth J. Winters ◽  
D. Richard Lachno ◽  
...  

Abstract Abstract 1049 Introduction: Evidence suggests that platelets are activated in sickle cell disease (SCD) and this appears to increase further during painful crises caused by vascular occlusions from sickled red blood cells. Antiplatelet therapy may be useful in reducing the frequency and severity of acute pain episodes and reducing the risk of thrombotic complications. Prasugrel, an ADP receptor antagonist, irreversibly inhibits the P2Y12 ADP receptor, blocking ADP-stimulated platelet activation and aggregation and reducing downstream procoagulant activities. Here we present the first evaluation of prasugrel's effects on markers of in vivo platelet activation and of coagulation in subjects with SCD. Methods: Twenty-six adult subjects were enrolled and 25 completed the study: 12 with SCD and 13 well-matched healthy controls. Subjects were examined before and after 12±2 days of treatment with oral prasugrel (5.0 mg/day for subjects weighing <60 kg and 7.5 mg/day for subjects weighing ≥60 kg). Markers of platelet activation and coagulation included whole-blood platelet-monocyte and -neutrophil aggregates, and whole blood platelet-associated P-selectin and platelet CD40L, all measured by flow cytometry and presented as percent (%) of marker positive cells. Plasma soluble (s) P-selectin, CD40L, and plasma prothrombin fragment 1.2 (F1.2) were evaluated by ELISA. Results: Results from the biomarkers are presented in the table. Prior to prasugrel administration (baseline), subjects with SCD had significantly higher levels of the following biomarkers compared to healthy subjects: Platelet-monocyte aggregates, platelet-neutrophil aggregates, platelet CD40L, and plasma F1.2. In addition, subjects with SCD had numerically higher values of sCD40L, as well as platelet-associated and sP-selectin. Prasugrel treatment resulted in numerical decreases in levels of all biomarkers (with the exception of platelet-associated CD40L for control subjects), most notably in SCD subjects with elevated baseline levels. Prasugrel was safe and well tolerated with no serious adverse events observed during the study. No subject discontinued the study due to an adverse event (AE) and the majority of AEs were mild. No subjects with SCD reported any bleeding-related AEs. Conclusion: In this study, compared to healthy controls, baseline elevation of several platelet-activation and coagulation markers among adult subjects with SCD is consistent with that seen in previous studies of both children and adults with SCD. The decrease in platelet activation biomarkers following 12 days of prasugrel treatment in subjects with SCD suggests prasugrel interrupts SCD-related platelet activation in vivo and raises the possibility that prasugrel may modulate the frequency and/or severity of painful crises associated with SCD. These data support additional studies of the safety and efficacy of prasugrel in the treatment of vascular complications associated with SCD. Disclosures: Jakubowski: Eli Lilly and Company: Employment, Equity Ownership. Off Label Use: This abstract discusses prasugrel treatment in patients with sickle cell disease. Please see USPI for most up-to-date information. Zhou:Eli Lilly and Company: Employment, Equity Ownership. Small:Eli Lilly and Company: Employment, Equity Ownership. Winters:Eli Lilly and Company: Employment, Equity Ownership. Lachno:Eli Lilly and Company: Employment, Equity Ownership. Frelinger:Takeda: Research Funding; Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Consultancy, Research Funding; GLSynthesis: Research Funding. Howard:Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Research Funding. Payne:Eli Lilly and Compnay: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 668-668
Author(s):  
Xavier M Anguela ◽  
Rajiv Sharma ◽  
Hojun Li ◽  
Virginia Haurigot ◽  
Anand Bhagwat ◽  
...  

Abstract Abstract 668 As a therapeutic strategy, site-specific modification of the genome has the potential to avoid some of the disadvantages of traditional gene replacement approaches such as insertional mutagenesis and lack of endogenous regulatory control of expression. We have recently reported that zinc finger nuclease (ZFN) driven gene correction can be achieved in vivo in a neonatal mouse model of hemophilia by combining AAV-mediated delivery of both the ZFNs and a Factor IX donor template with homology to the targeted F.IX gene (Li et al., Nature, 2011). The mouse model carries a mutant human F.IX mini-gene (hF9mut) knocked into the ROSA26 locus and ZFN-mediated cleavage followed by donor-dependent repair results in restoration of functional F.IX expression. AAV-ZFN and AAV-Donor vectors were administered to neonatal mice, where the rapid proliferation of hepatocytes in the growing animal may promote genome editing through homology directed repair (HDR). Here we sought to investigate whether ZFN-mediated genome editing is feasible in adult animals with predominantly quiescent hepatocytes. Tail vein injection of the AAV-ZFN and AAV-Donor, containing a promoterless wild type factor IX insert flanked by arms of homology to the target site, into adult (8 week old) mice (n=17) resulted in stable (>10wk) circulating F.IX levels of 730–1900 ng/mL (15-38% of normal), whereas mice receiving ZFN alone (n=9) exhibited F.IX levels below detection (<15 ng/mL). Co-delivery of AAV-Mock (luciferase expressing) & AAV-Donor (n=9), yielded <65 ng/mL F.IX. Importantly, mice lacking the hF9mut gene averaged less than 100 ng/mL after receiving AAV-ZFN and AAV-Donor (n=8), suggesting that F.IX expression was derived from on-target genome editing. To eliminate the potential for hF.IX expression resulting from episomal (non-integrated) AAV genomes we performed a two-thirds partial hepatectomy two days after AAV administration. Liver regeneration following hepatectomy is known to substantially reduce expression from non-integrated AAV genomes yet no significant differences in transgene expression were observed compared to non-hepatectomized mice: circulating F.IX levels in the AAV-ZFN + AAV-Donor group (n=13) ranged between 678–1240 ng/mL, whereas mice receiving ZFN alone (n=8) or Mock + AAV-Donor (n=8) had no detectable F.IX expression, or <100 ng/mL F.IX, respectively. Taken together, these data suggest that the F.IX expression in ZFN + Donor treated mice was derived from stable correction of the genome at the intended target site. In summary, we have shown that synchronized cell proliferation of hepatocytes, either in neonatal mice or following partial hepatectomy, is not necessary to achieve highly efficient genome editing and resultant high levels of transgene expression in vivo. These findings substantially expand the potential of ZFN-mediated genome editing as a therapeutic modality. Disclosures: Doyon: Sangamo Biosciences: Employment. Gregory:Sangamo Biosciences: Employment. Holmes:Sangamo Biosciences: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4412-4412 ◽  
Author(s):  
Deepak Sampath ◽  
Sylvia Herter ◽  
Frank Herting ◽  
Ellen Ingalla ◽  
Michelle Nannini ◽  
...  

Introduction Obinutuzumab (GA101) is a novel glycoengineered type II, anti-CD20 monoclonal antibody induces a high level of direct cell death. As a result of glycoengineering, GA101 has increased affinity for FcgRIIIa on effector cells resulting in enhanced direct cell death and ADCC induction. GA101 is currently in pivotal clinical trials in CLL, indolent NHL and DLCBL. ABT-199 (GDC-0199) is a novel, orally bioavailable, selective Bcl-2 inhibitor that induces robust apoptosis in preclinical models of hematological malignancies and is currently in clinical trials for CLL, NHL and MM. Based on their complementary mechanisms of action involving increased apoptosis (GDC-0199) or direct cell death (GA101) the combination of anti-CD20 therapy with a Bcl-2 inhibitor has the potential for greater efficacy in treating B lymphoid malignancies. Experimental Methods The combination of GA101 or rituximab with GDC-0199 was studied in vitro utilizing assays that measure direct cell death induction/apoptosis (AxV/Pi positivity) on WSU-DLCL2, SU-DHL4 DLBCL and Z138 MCL cells by FACS and the impact of Bcl-2 inhibition on ADCC induction. In vivo efficacy of the combination of GA101 or rituximab and GDC-0199 was evaluated in SU-DHL4 and Z138 xenograft models. Results GA101 and rituximab enhanced cell death induction when combined with GDC-0199 in SU-DHL4, WSU-DLCL2 and Z138 cell lines. When combined at optimal doses an additive effect of the two drugs was observed. GDC-0199 did not negatively impact the capability of GA101 or rituximab to induce NK-cell mediated ADCC. Combination of GDC-0199 and GA101 induced a greater than additive anti-tumor effects in the SU-DHL4 and Z138 xenograft models resulting in tumor regressions and delay in tumor regrowth when compared to monotherapy. Moreover, continued single-agent treatment with GDC-0199 after combination with GA101 resulted in sustained in vivo efficacy in the SU-DHL4 model. Conclusions Our data demonstrate that the combination of GA101 with GDC-0199 results in enhanced cell death and robust anti-tumor efficacy in xenograft models representing NHL sub-types that is comparable to the combination of rituximab with GDC-0199. In addition, single-agent treatment with GDC-0199 following combination with GA101 sustains efficacy in vivo suggesting a potential benefit in continued maintenance therapy with GDC-0199. Collectively the preclinical data presented here supports clinical investigation of GA101 and GDC-0199 combination therapy, which is currently in a phase Ib clinical trial (clinical trial.gov identifier NCT01685892). Disclosures: Sampath: Genentech: Employment, Equity Ownership. Herter:Roche: Employment. Herting:Roche: Employment. Ingalla:Genentech: Employment. Nannini:Genentech: Employment. Bacac:Roche: Employment. Fairbrother:Genentech: Employment, Equity Ownership. Klein:Roche Glycart AG: Employment.


Sign in / Sign up

Export Citation Format

Share Document