Lung Damage and Thrombocytopenia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4638-4638
Author(s):  
Mo Yang ◽  
En Yu Liang ◽  
Li Xia Zhou ◽  
Beng H Chong ◽  
Chunfu Li

Abstract Hematological changes in patients with lung damage were common and included thrombocytopenia (55%) (Yang et al, Int J Mol Med. 2004; Hon et al, Lancet. 2003). A number of potential mechanisms have been investigated. The lungs of patients who died of lung infection show diffuse alveolar damage with pulmonary congestion, edema, formation of hyaline membrane, and fibrosis. Viral infection, oxygen toxicity and/or barotrauma contribute to the lung damage. The lung tissue and pulmonary endothelial cell damage result in platelet activation, aggregation, and thrombi formation at the site of the injury. All these mechanisms may induce the consumption of platelets and megakaryocytes (MK). The association between lung injury and thrombocytopenia was investigated by comparing the MK and platelet counts, and platelet activation using P-selectin as a marker, between the prepulmonary (right atrial) and postpulmonary (left atrial) blood in rats with and without hyperoxic lung injury. In the healthy controls, the postpulmonary blood had lower megakaryocyte count, higher platelet count, but similar P-selectin expression. In contrast, the lung-damaged animals did not show any such differences in either MK or platelet count, but P-selectin expression was greater in the postpulmonary blood. Peripheral platelet and intra-pulmonary MK counts in the lung-damaged rats were significantly lower than those in their respective controls. Intra-pulmonary thrombi or platelet aggregation were detected in the lung-damaged rats but not in the controls. These findings showed that lung damage reduced circulating platelets through (i) failure of the lungs to retain and fragment MK to release platelets, (ii) and platelet activation leading to platelet aggregation, thrombi formation and platelet consumption. The number and morphology of circulating MK were also investigated before, during and after cardiopulmonary bypass (CPB) in 22 patients undergoing routine cardiac surgery. Results showed that: (i) The total number of MK in central venous was higher than those of peripheral arteries during normal circulation (P<0.01). There was significant decrease of Type-4 MK (mature and large MK) number in peripheral arteries compared with that in central venous (P<0.001); and (ii) During CPB, the total MK and Type-4 MK of central venous and peripheral arteries were significant increased when compared with that in normal circulation (P<0.01). Our observation supports that the lungs may remove large MK during normal circulation. This physiological effect would be lost on CPB. On the other hand, the lungs may be the sites of platelet release from mature MK. The inflammation, the long term ventilation and/or oxygen therapy may result in pulmonary fibrosis and other pathological changes. The reduced or morphologically altered pulmonary capillary bed would affect the MK fragmentation in the lung. The increased consumption of platelet and/or the decreased production of platelet may lead to thrombocytopenia. Disclosures Yang: National Natural Science Foundation of China(81270580): Research Funding.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3026-3026
Author(s):  
Mo Yang ◽  
Da Wei Xiao ◽  
Karen Kwai Har Li ◽  
Chi Kong Li ◽  
Ki Wai Chik ◽  
...  

Abstract Hematological changes in patients with Severe Acute Respiratory Syndrome (SARS) were common and included thrombocytopenia (55%) (Yang et al, Int J Mol Med. 2004). Thrombocytopenia (50%) was also present in paediatric SARS patients (Hon et al, Lancet. 2003). A number of potential mechanisms have been investigated. The lungs of patients who died of SARS infection show diffuse alveolar damage with pulmonary congestion, edema, formation of hyaline membrane, and fibrosis. Viral infection, oxygen toxicity and/or barotrauma contribute to the lung damage. The lung tissue and pulmonary endothelial cell damage result in platelet activation, aggregation, and thrombi formation at the site of the injury. All these mechanisms may induce the consumption of platelets and megakaryocytes (MK). The association between lung injury and thrombocytopenia was investigated by comparing the MK and platelet counts, and platelet activation using P-selectin as a marker, between the prepulmonary (right atrial) and postpulmonary (left atrial) blood in rats with and without hyperoxic lung injury. In the healthy controls, the postpulmonary blood had lower megakaryocyte count, higher platelet count, but similar P-selectin expression. In contrast, the lung-damaged animals did not show any such differences in either MK or platelet count, but P-selectin expression was greater in the postpulmonary blood. Peripheral platelet and intra-pulmonary MK counts in the lung-damaged rats were significantly lower than those in their respective controls. Intra-pulmonary thrombi or platelet aggregation were detected in the lung-damaged rats but not in the controls. These findings showed that lung damage reduced circulating platelets through (i) failure of the lungs to retain and fragment MK to release platelets, (ii) and platelet activation leading to platelet aggregation, thrombi formation and platelet consumption. The number and morphology of circulating MK were also investigated before, during and after cardiopulmonary bypass (CPB) in 20 patients undergoing routine cardiac surgery. Results showed that: (i) The total number of MK in central venous was higher than those of peripheral arteries during normal circulation (P&lt;0.01). There was significant decrease of Type-4 MK (mature and large MK) number in peripheral arteries compared with that in central venous (P&lt;0.001); and (ii) During CPB, the total MK and Type-4 MK of central venous and peripheral arteries were significant increased when compared with that in normal circulation (P&lt;0.01). Our observation supports that the lungs may remove large MK during normal circulation. This physiological effect would be lost on CPB. On the other hand, the lungs may be the sites of platelet release from mature MK. The inflammation, the long term ventilation and/or oxygen therapy may result in pulmonary fibrosis and other pathological changes. The reduced or morphologically altered pulmonary capillary bed would affect the MK fragmentation in the lung. The increased consumption of platelet and/or the decreased production of platelet may lead to thrombocytopenia.


2020 ◽  
Author(s):  
Caroline Busatta Vaz de Paula ◽  
Marina Luise Viola Azevedo ◽  
Seigo Nagashima ◽  
Ana Paula Camargo Martins ◽  
Mineia Alessandra Scaranello Malaquias ◽  
...  

Abstract Background: The COVID-19 fatality rate is high when compared to the H1N1pdm09 (pandemic Influenza A virus H1N1 subtype) rate, and although both cause an aggravated inflammatory response, the differences in the mechanisms of both pandemic pneumonias need clarification.Objective: To analyze tissue expression of interleukins 4, 13, (IL-4, IL-13), transforming growth factor-beta (TGF-β), and the number of M2 macrophages (Sphingosine-1) in patients who died by COVID-19, comparing with cases of severe pneumopathy caused by H1N1pdm09, and a control group without lung injury.Methods: Six lung biopsy samples of patients who died of SARS-CoV-2 (COVID-19 group) were used and compared with ten lung samples of adults who died from a severe infection of H1N1pdm09 (H1N1 group) and eleven samples of patients who died from different causes without lung injury (CONTROL group). The expression of IL-4, IL-13, TGF-β, and M2 macrophages score (Sphingosine-1) were identified through immunohistochemistry (IHC).Results and conclusion: Significantly higher IL-4 tissue expression and Sphingosine-1 in M2 macrophages was observed in the COVID-19 group when compared to both the H1N1 and the CONTROL groups. Different mechanism of diffuse alveolar damage (DAD) in SARS-CoV-2 compared to H1N1pdm09 infections were observed. IL-4 expression and lung remodeling are phenomena observed in both SARS-COV-2 and H1N1pdm09. However, SARS-CoV-2 seems to promote lung damage through different mechanisms, such as the scarce participation Th1/Th17 response and the higher participation of the Th2. The understanding and management of the aggravated and ineffective immune response elicited by SARS-CoV-2 merits further clarification to improve treatments propose.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Nair Y Maeda ◽  
Mariana M Clavé ◽  
Sonia M Mesquita ◽  
Sergio P Bydlowski ◽  
Antonio A Lopes

Background: Patients with pulmonary arterial hypertension (PAH) associated with the Eisenmeger syndrome (ES) frequently have decreased platelet counts and aggregation. This is probably due to chronic endogenous platelet activation and consumption associated with hypoxemia and blood hyperviscosity, with "exhausted" platelets present in circulation. When platelets are analyzed in vitro, decreased response to aggregation inducing agents is generally observed. Purpose: Since phosphodiesterase-5 inhibitors (PDE-5Is) are frequently used in the management of PAH, we investigated, the effects of sildenafil and tadalafil on in vitro platelet aggregation (PA) in adults with ES. Methods: Twenty-three naïve patients aged 28 (22-47) years (median and interquartile range) were randomly assigned to oral treatment with sildenafil (20mg t.i.d., N=11) or tadalafil (single daily dose of 40mg, N=12). Baseline spO 2 , Ht, Hb level and platelet count were 87% (80-92%), 52% (49-60%), 17 (16-20)g/dL and 205 (158-248) x 10 3 pl/μL, respectively. Data were collected at baseline, 90 and 180 days of treatment. Whole blood PA was analyzed by the impedance method. Results are expressed as percent normal. Results: Treatment with PDE-5Is resulted in decrease Ht and Hb level (p<0.001), but no change in platelet count. When patients analyzed as a whole (N=23), ADP-induced PA was 44% (23-91%), 54% (23-87%) and 71% (42-124%) respectively at baseline, 90 and 180 days (p=0.029). Collagen-induced PA was 55% (23-138%), 96% (67-162%) and 146% (62-187%), respectively (p=0.041). When treatment groups were investigated separately at 180 days, collagen-induced PA was 2.7 (1.1-11.1) times baseline in sildenafil-treated patients, and 1.8 (0.6-4.2) times baseline in the tadalafil group. ADP-induced PA was 2.2 (1.3-4.8) times baseline in the sildenafil , but 1.0 (0.7-3.6) time baseline for tadalafil. Conclusion: In ES patients, PDE-5Is therapy is associated with improvement of PA. This may be due to decelerated endogenous platelet activation associated with hemodynamic improvement. However, particularly for sildenafil, some patients may become transiently at a higher risk of thrombotic events, as PA increases far above normal levels.


Author(s):  
Sanjay Mukhopadhyay ◽  
Mitra Mehrad ◽  
Pedro Dammert ◽  
Andrea V Arrossi ◽  
Rakesh Sarda ◽  
...  

Abstract Objectives The aim of this report is to describe the lung biopsy findings in vaping-associated pulmonary illness. Methods Lung biopsies from eight patients with vaping-associated pulmonary illness were reviewed. Results The biopsies were from eight men (aged 19-61 years) with respiratory symptoms following e-cigarette use (vaping). Workup for infection was negative in all cases, and there was no evidence for other etiologies. Imaging showed diffuse bilateral ground-glass opacities in all patients. Most recovered with corticosteroid therapy, while one died. Lung biopsies (seven transbronchial, one surgical) showed acute lung injury, including organizing pneumonia and/or diffuse alveolar damage. Common features were fibroblast plugs, hyaline membranes, fibrinous exudates, type 2 pneumocyte hyperplasia, and interstitial organization. Some cases featured a sparse interstitial chronic inflammatory infiltrate. Although macrophages were present within the airspaces in all cases, this feature was not prominent, and findings typical of exogenous lipoid pneumonia were absent. Conclusions The histopathology of acute pulmonary illness related to e-cigarette use (vaping) is characterized by acute lung injury patterns, supporting the contention that vaping can cause severe lung damage.


Author(s):  
Dietrich Henzler ◽  
Alf Schmidt ◽  
Zhaolin Xu ◽  
Nada Ismaiel ◽  
Haibo Zhang ◽  
...  

Abstract Background An on-going debate exists as to whether partial ventilatory support is lung protective in an acute phase of ARDS. So far, the effects of different respiratory efforts on the development of ventilator-associated lung injury (VALI) have been poorly understood. To test the hypothesis whether respiratory effort itself promotes VALI, acute lung injury (ALI) was induced in 48 Sprague Dawley rats by hydrochloric acid aspiration model. Hemodynamics, gas-exchange, and respiratory mechanics were measured after 4 h of ventilation in pressure control (PC), assist-control (AC), or pressure support with 100% (PS100), 60% (PS60), or 20% (PS20) of the driving pressure during PC. VALI was assessed by histological analysis and biological markers. Results ALI was characterized by a decrease in PaO2/FiO2 from 447 ± 75 to 235 ± 90 mmHg (p < 0.001) and dynamic respiratory compliance from 0.53 ± 0.2 to 0.28 ± 0.1 ml/cmH2O (p < 0.001). There were no differences in hemodynamics or respiratory function among groups at baseline or after 4 h of ventilation. The reduction of mechanical pressure support was associated with a compensatory increase in an inspiratory effort such that peak inspiratory transpulmonary pressures were equal in all groups. The diffuse alveolar damage score showed significant lung injury but was similar among groups. Pro- and anti-inflammatory proteins in the bronchial fluid were comparable among groups. Conclusions In experimental ALI in rodents, the respiratory effort was increased by reducing the pressure support during partial ventilatory support. In the presence of a constant peak inspiratory transpulmonary pressure, an increased respiratory effort was not associated with worsening ventilator-associated lung injury measured by histologic score and biologic markers.


2009 ◽  
Vol 107 (6) ◽  
pp. 1825-1829 ◽  
Author(s):  
Jean-Michel Pontier ◽  
Nicolas Vallée ◽  
Lionel Bourdon

Previous studies have highlighted that bubble-induced platelet aggregation is a predictor index of decompression sickness (DCS) severity in animals and bubble formation after a single air dive in humans. The present study attempted to investigate plasmatic indexes of the coagulation system and platelet activation in our rat model of DCS. Male Sprague-Dawley rats were assigned to one experimental group with a hyperbaric exposure and one control group maintained at atmospheric pressure. Rats were compressed to 1,000 kPa (90 m saltwater) for 45 min while breathing air. The onset of death time and DCS symptoms were recorded during a 30-min observed period after rats had surfaced. Plasmatic indexes were platelet factor 4 (PF4) for platelet activation, soluble glycoprotein V (sGPV) for thrombin generation, and thrombin-antithrombin complexes for the coagulation system. Blood samples for a platelet count and markers were taken 3 wk before the experimental protocol and within the 30 min after rats had surfaced. We confirmed a correlation between the percent fall in platelet count and DCS severity. Plasmatic levels of sGPV and PF4 were significantly increased after the hyperbaric exposure, with no change in the control group. The present study confirms platelet consumption as a potential index for evaluating decompression stress and DCS severity. The results point to the participation of thrombin generation in the coagulation cascade and platelet activation in bubble-induced platelet aggregation. In our animal model of DCS, the results cannot prejudge the mechanisms of platelet activation between bubble-induced vessel wall injury and bubble-blood component interactions.


2016 ◽  
Vol 311 (2) ◽  
pp. L229-L237 ◽  
Author(s):  
F. Puig ◽  
R. Herrero ◽  
R. Guillamat-Prats ◽  
M. N. Gómez ◽  
J. Tijero ◽  
...  

The majority of the animal models of acute lung injury (ALI) are focused on the acute phase. This limits the studies of the mechanisms involved in later phases and the effects of long-term treatments. Thus the goal of this study was to develop an experimental ALI model of aspiration pneumonia, in which diffuse alveolar damage continues for 72 h. Rats were intratracheally instilled with one dose of HCl (0.1 mol/l) followed by another instillation of one dose of LPS (0, 10, 20, 30, or 40 μg/g body weight) 2 h later, which models aspiration of gastric contents that progresses to secondary lung injury from bacteria or bacterial products. The rats were euthanized at 24, 48, and 72 h after the last instillation. The results showed that HCl and LPS at all doses caused activation of inflammatory responses, increased protein permeability and apoptosis, and induced mild hypoxemia in rat lungs at 24 h postinstillation. However, this lung damage was present at 72 h only in rats receiving HCl and LPS at the doses of 30 and 40 μg/g body wt. Mortality (∼50%) occurred in the first 48 h and only in the rats treated with HCl and LPS at the highest dose (40 μg/g body wt). In conclusion, intratracheal instillation of HCl followed by LPS at the dose of 30 μg/g body wt results in severe diffuse alveolar damage that continues at least 72 h. This rat model of aspiration pneumonia-induced ALI will be useful for testing long-term effects of new therapeutic strategies in ALI.


2020 ◽  
Author(s):  
Deepak. K. Agrawal ◽  
Bradford J. Smith ◽  
Peter D. Sottile ◽  
David J. Albers

AbstractThe acute respiratory distress syndrome (ARDS) is characterized by the acute development of diffuse alveolar damage (DAD) resulting in increased vascular permeability and decreased alveolar gas exchange. Mechanical ventilation is a potentially lifesaving intervention to improve oxygen exchange but has the potential to cause ventilator-induced lung injury (VILI). A general strategy to reduce VILI is to use low tidal volume and low-pressure ventilation, but optimal ventilator settings for an individual patient are difficult for the bedside physician to determine and mortality from ARDS remains unacceptably high. Motivated by the need to minimize VILI, scientists have developed models of varying complexity to understand diseased pulmonary physiology. However, simple models often fail to capture real-world injury while complex models tend to not be estimable with clinical data, limiting the clinical utility of existing models. To address this gap, we present a physiologically anchored data-driven model to better model lung injury. Our approach relies on using clinically relevant features in the ventilator waveform data that contain information about pulmonary physiology, patients-ventilator interaction and ventilator settings. Our lung model can reproduce essential physiology and pathophysiology dynamics of differently damaged lungs for both controlled mouse model data and uncontrolled human ICU data. The estimated parameters values that are correlated with a known measure of lung physiology agree with the observed lung damage. In future endeavors, this model could be used to phenotype ventilator waveforms and serve as a basis for predicting the course of ARDS and improving patient care.


2020 ◽  
Author(s):  
Caroline Busatta Vaz de Paula ◽  
Marina Luise Viola Azevedo ◽  
Seigo Nagashima ◽  
Ana Paula Camargo Martins ◽  
Mineia Alessandra Scaranello Malaquias ◽  
...  

Abstract Background: The COVID-19 fatality rate is high when compared to the H1N1pdm09 (pandemic Influenza A virus H1N1 subtype) rate, and although both cause an aggravated inflammatory response, the differences in the mechanisms of both pandemic pneumonias need clarification.Objective: To analyze tissue expression of interleukins 4, 13, (IL-4, IL-13), transforming growth factor-beta (TGF-β), and the number of M2 macrophages (Sphingosine-1) in patients who died by COVID-19, comparing with cases of severe pneumopathy caused by H1N1pdm09, and a control group without lung injury.Methods: Six lung biopsy samples of patients who died of SARS-CoV-2 (COVID-19 group) were used and compared with ten lung samples of adults who died from a severe infection of H1N1pdm09 (H1N1 group) and eleven samples of patients who died from different causes without lung injury (CONTROL group). The expression of IL-4, IL-13, TGF-β, and M2 macrophages score (Sphingosine-1) were identified through immunohistochemistry (IHC).Results and conclusion: Significantly higher IL-4 tissue expression and Sphingosine-1 in M2 macrophages was observed in the COVID-19 group when compared to both the H1N1 and the CONTROL groups. Different mechanism of diffuse alveolar damage (DAD) in SARS-CoV-2 compared to H1N1pdm09 infections were observed. IL-4 expression and lung remodeling are phenomena observed in both SARS-COV-2 and H1N1pdm09. However, SARS-CoV-2 seems to promote lung damage through different mechanisms, such as the scarce participation Th1/Th17 response and the higher participation of the Th2. The understanding and management of the aggravated and ineffective immune response elicited by SARS-CoV-2 merits further clarification to improve treatments propose.


2008 ◽  
Vol 14 (3) ◽  
pp. 346-351 ◽  
Author(s):  
Rahajuningsih Setiabudy ◽  
Pustika Amalia Wahidiyat ◽  
Lyana Setiawan

Thromboembolic events and hypercoagulable state have been reported in patients with thalassemia. As platelets play an important role in the pathogenesis of thrombosis, the authors aimed to find the pattern of changes in platelet count, function and activation, and evidence of coagulation activation in patients with thalassemia major in Indonesia. A total of 31 patients with splenectomized and 35 patients with nonsplenectomized thalassemia major were enrolled in this study. Platelet count, platelet aggregation, β-thromboglobulin, and D-dimer levels were measured. All measured parameters were significantly higher in splenectomized than in nonsplenectomized patients. β-thromboglobulin level was increased, but D-dimer level was within normal range. The authors concluded that there was an increase in platelet activation in patients with β-thalassemia major. Platelet activation was higher in splenectomized than in nonsplenectomized patients.


Sign in / Sign up

Export Citation Format

Share Document