Adipocyte-Derived Adiponectin Positively Regulates Exit from Quiescence of Hematopoietic Stem Cells By Potentiating mTORC1 Activation after Myelotoxic Injury

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 777-777 ◽  
Author(s):  
Yosuke Masamoto ◽  
Shunya Arai ◽  
Tomohiko Sato ◽  
Iseki Takamoto ◽  
Naoto Kubota ◽  
...  

Abstract Myelotoxic injury unlocks the vigorous power of hematopoietic stem cells (HSCs) to replenish the hematopoietic system, making quiescent HSCs enter the cell cycle. Microscopically, it is well known that adipose tissue replaces cellular components in bone marrow (BM) after myeloablation by chemotherapeutic agents or irradiation. In a steady-state hematopoiesis, both HSC-intrinsic and -extrinsic mechanisms enforce quiescence of HSCs, and the interaction between HSCs and BM microenvironment has been drawing much attention in maintenance of the quiescence. In this meaning, it is supposed that the drastic change in BM microenvironment by myeloablation might trigger and promote the cell cycle entry of HSCs. We have previously reported that adiponectin, adipocyte-derived anti-diabetic hormone, indirectly enhances proliferation of murine immature myeloid progenitors upon granulocyte-colony stimulating factor treatment (emergency granulopoiesis) in Socs3-Stat3 dependent fashion by suppressing TNF-α production from macrophages (ASH meeting 2013, Abstract 221), however, its direct effect against HSCs in vivo is needed to be elucidated. Additionally, we have shown that both genetic loss and high-fat diet-induced reduction of adiponectin have no impact on steady-state hematopoiesis. Considering BM adipose tissue is an endocrine organ and adipocytes are the major cellular component in ablated marrow, we hypothesized that adiponectin derived from adipocytes might be implicated in HSC activation and subsequent hematopoietic recovery. Adiponectin-null (adipo-/-) mice showed significantly delayed hematopoietic recovery after 5-fluorouracil (5-FU) administration. In 5-FU-treated BM, adipo-/- SLAM-HSCs (CD150+ CD48- Lin- Sca-1+) and CD34- SLAM-HSCs were more quiescent than adipo+/+ counterparts. Adipo-/- mice survived longer than adipo+/+ control mice after serial 5-FU treatment. Taken into account our previous data showing that impaired emergency granulopoiesis of adipo-/- mice is Socs3-Stat3 dependent and Socs3 haploinsufficiency ameliorated the defect, we further investigated whether activation of adipo-/- HSCs on 5-FU treatment was potentiated by genetic loss of Socs3. But Socs3 haploinsufficiency had no capacity to revert impaired activation of adipo-/- HSCs, suggesting some mechanisms other than that of impaired emergency granulopoiesis in adipo-/- mice. Strikingly, adipo-/- HSCs were shown to be defective in mTORC1 activation, phosphorylation of S6 and mitochondrial activity after 5-FU treatment. In vivo rapamycin treatment cancelled the effect of adiponectin upon HSC activation by 5-FU, suggesting that adiponectin enhances HSC activation through mTORC1-dependent mechanism. Physiological isoform of adiponectin (full-length adiponectin) enhanced not only 5-FU-induced mTORC1 activation in vivo but also cytokine-induced activation in vitro, shortened the time to first division, without affecting subsequent proliferation of HSCs, in contrast to the previous report using non-physiological isoform (globular adiponectin) in vitro. The concentration of adiponectin in BM had a 4-fold increase after 5-FU treatment while the level in plasma remained unchanged. In a steady state, adiponectin level in adipocyte-rich tibia is higher than femur, suggesting local production of adiponectin constitutes a significant portion of BM adiponectin. Every BM cell components examined expressed adiponectin mRNA, and adipocytes had the highest. As 5-FU treatment had little effect on adiponectin expression in adipocytes, it was suggested that increased adipocytes in BM contributed to increased adiponectin upon myelotoxic injury. Furthermore, reciprocal transplants with adipo+/+ and adipo-/- mice demonstrated that adiponectin from BM environment of recipient mice plays a major role in the activation of HSC after in vivo 5-FU treatment and in vitro cytokine stimulation. These data reveal that adiponectin, produced mainly from increased adipocytes after myelotoxic injury, positively regulates HSC activation and subsequent hematopoietic recovery. Our data also highlight adipocytes as an essential source of adiponectin to ensure the proliferative burst of hematopoietic cells in myeloablated marrow. Adiponectin treatment could be clinically applied to relieve myelosuppression by chemotherapy. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2899-2899
Author(s):  
Jodi Murakami ◽  
Baohui Xu ◽  
Christopher B. Franco ◽  
Xingbin Hu ◽  
Stephen J. Galli ◽  
...  

Abstract α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis remains controversial. To investigate this, we conducted studies using a mouse model in which β7 integrin is absent. Hematopoietic stem cells (HSCs) that lacked β7 integrin (β7KO) had significantly reduced engraftment potential. Intriguingly, the survival of β7KO mice was enhanced and their hematopoietic recovery after 5-fluorouracil-induced myeloablative stress was better compared to wild type (WT) mice, indicating that the decreased engraftment of β7KO HSCs was not caused by a defect in HSC hematopoietic activity. Next we examined the homing abilities of HSCs and we observed that β7KO HSCs had impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand - mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on bone marrow (BM) endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment. Interestingly, we also found that β7KO HSCs were retained in the BM, suggesting that β7 integrin may influence the localization of HSCs within different stem cell niches through interaction with MAdCAM-1. To examine the localization of HSCs within the BM, we used the hypoxyprobe pimonidazole to correlate oxygen status with niche localization. We observed that both β7KO and MAdCAM-1KO HSCs were more hypoxic compared to WT HSCs, demonstrating that the absence of either β7 integrin or MAdCAM-1 in mice causes HSCs to be localized in a more hypoxic region of the BM. To confirm these findings, we performed single-cell RT-PCR using Fluidigm Dynamic Array Chips and we discovered that β7KO HSCs differentially expressed genes associated with niche localization and cell cycle status compared to WT HSCs. Since hypoxia correlates with quiescence, we next assessed the cell cycle status of HSCs using Ki67 staining and in vivo BrdU assay and we found that β7KO HSCs may have reduced cell cycle activity. Collectively, these studies suggest that expression of β7 integrin on HSCs may promote exit from quiescence and influence HSC localization within the BM niche. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5602-5602
Author(s):  
Jiajing Qiu ◽  
Jana Gjini ◽  
Miao Lin ◽  
Tasleem Arif ◽  
Saghi Ghaffari

Quiescence is the main property of the most potent hematopoietic stem cells (HSCs). Recent evidence suggests that mitochondrial activity may be implicated in the maintenance of stem cell quiescence. However, the potential function of mitochondria in the regulation of human HSCs remains largely unknown. To address this, we measured mitochondrial membrane potential (MMP) in subpopulations of human HSCs, using Tetramethylrhodamine, ethyl ester (TMRE) a cationic fluorescent dye sequestered by active mitochondria. We found that MMP profiles progressively shift towards lower levels in subpopulations with phenotypes of higher hematopoietic hierarchy. Subpopulation of CD34+CD38-CD45- cells within the 10% lowest MMP enriched for highly primitive CD90+ HSCs from 17.5% to 49.0% as compared to those within the 10% highest MMP (p=0.0049, n=5). These results are consistent with the murine HSC finding in our laboratory. To analyze the functional activity of HSCs with various MMP levels, subpopulations of CD90+ HSCs (CD34+CD38-CD45-CD90+) with the lowest and the highest 25% MMP were FACS-sorted as MMP-low and MMP-high HSCs respectively and subjected to long-term culture initiating cell (LTC-IC) limiting dilution assay. The results after 5 weeks revealed that the frequency of LTC-IC is much greater in MMP-low HSCs (1 in 7.85 cells) than in MMP-high HSCs (1 in 59.3 cells) (n=2). These results suggest that MMP-low HSCs maintain higher functional potential than MMP-high HSCs. The in vivo analysis of the MMP-low and MMP-high HSCs transplanted into NSG mice is ongoing (will be performed at 5 months). FACS-sorted MMP-low and high HSCs were subjected to cell cycle analysis by Pyronin Y/ Hoechst-33342 staining. We found that above 90% of both MMP-low and MMP-high HSCs were in a quiescence state (MMP-low: 4.48 %, MMP-high: 9.38% in G1; 0% in S/G2/M). Additionally, the expression of CDK6 that is associated with HSC activation was not detectable by confocal microscopy in either MMP-low or MMP-high HSCs (low: n=31, high: n=19). To identify potential distinct kinetic of cell cycle entry, FACS-sorted single HSCs were cultured in serum free medium (SFM), STEM SPAN, supplemented with cytokines (SCF 100ng/ml, TPO 50ng/ml, Flt3 50ng/ml). The occurrence of cell division in each well was monitored under microscopy every 12 hours for 6 days. At each time point the percentage of divided HSCs among total initial seeding HSCs were plotted and curve fitted to calculate the kinetics of cumulative first division (low: n=58, R2=0.9981; high: n=58, R2=0.9973). These analyses showed that MMP-low HSCs were delayed by 1.9 hrs as compared to MMP-high HSCs for cumulative 50% cells to complete the first division. The percentage of newly divided cells of first division at each time point was also plotted. Two waves of first division were revealed in both MMP-low and MMP-high HSCs. The peak of the first wave was delayed by 7 hours in MMP-low HSCs, while the second wave was delayed by 14 hours as compared to MMP-high HSCs. These results indicate that even though both MMP-low and MMP-high CD90+ HSCs are mostly in a quiescence state, upon cytokine exposure in vitro, MMP-high HSCs exist G0 phase more rapidly than MMP-low HSCs. In agreement with this interpretation, MMP-high HSCs express significantly higher level of CDK6 when cultured for 34 hours in the presence of the same cytokines as described above (low: n=14, high n=35; p=0.006). We also investigated whether MMP-low and MMP-high CD90+ HSCs can be maintained in vitro in the absence of cytokines. Both populations were cultured in 96 well plates for 7 days in SFM without cytokines. The percentage of live cells was significantly higher in MMP-low HSCs cultured for 7 days (64.9%) as compared to MMP-high HSCs (44.2%) (p=0.03). Furthermore, morphological analysis by mitochondrial specific probe TOM20 showed that MMP-low contained more fragmented mitochondria as compared to MMP-high HSCs. Our findings suggest that mitochondrial activity may be implicated in the regulation of HSC quiescence. Altogether these results support the notion that human MMP-low CD90+ HSCs are molecularly distinct from MMP-high CD90+ HSCs and maintain quiescence in vitro to a higher degree than MMP-high CD90+ HSCs which are more primed for activation. Disclosures Ghaffari: Rubius Therapeutics: Consultancy.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 951 ◽  
Author(s):  
Yong Dong ◽  
Chengxiang Xia ◽  
Qitong Weng ◽  
Tongjie Wang ◽  
Fangxiao Hu ◽  
...  

Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.


2015 ◽  
Vol 210 (2) ◽  
pp. 2102OIA144
Author(s):  
Nicole Mende ◽  
Erika E Kuchen ◽  
Mathias Lesche ◽  
Tatyana Grinenko ◽  
Konstantinos D Kokkaliaris ◽  
...  

2012 ◽  
Vol 21 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Marilaine Fournier ◽  
Charles-Étienne Lebert-Ghali ◽  
Gorazd Krosl ◽  
Janet J. Bijl

Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4126-4133 ◽  
Author(s):  
Ann C. M. Brun ◽  
Jon Mar Björnsson ◽  
Mattias Magnusson ◽  
Nina Larsson ◽  
Per Leveén ◽  
...  

Abstract Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 860-869 ◽  
Author(s):  
Seiji Fukuda ◽  
Huimin Bian ◽  
Andrew G. King ◽  
Louis M. Pelus

Abstract Mobilized peripheral blood hematopoietic stem cells (PBSCs) demonstrate accelerated engraftment compared with bone marrow; however, mechanisms responsible for enhanced engraftment remain unknown. PBSCs mobilized by GROβ (GROβΔ4/CXCL2Δ4) or the combination of GROβΔ4 plus granulocyte colony-stimulating factor (G-CSF) restore neutrophil and platelet recovery faster than G-CSF–mobilized PBSCs. To determine mechanisms responsible for faster hematopoietic recovery, we characterized immunophenotype and function of the GROβ-mobilized grafts. PBSCs mobilized by GROβΔ4 alone or with G-CSF contained significantly more Sca-1+-c-kit+-lineage− (SKL) cells and more primitive CD34−-SKL cells compared with cells mobilized by G-CSF and demonstrated superior competitive long-term repopulation activity, which continued to increase in secondary and tertiary recipients. GROβΔ4-mobilized SKL cells adhered better to VCAM-1+ endothelial cells compared with G-CSF–mobilized cells. GROβΔ4-mobilized PBSCs did not migrate well to the chemokine stromal derived factor (SDF)-1α in vitro that was associated with higher CD26 expression. However, GROβΔ4-mobilized SKL and c-Kit+ lineage− (KL) cells homed more efficiently to marrow in vivo, which was not affected by selective CXCR4 and CD26 antagonists. These data suggest that GROβΔ4-mobilized PBSCs are superior in reconstituting long-term hematopoiesis, which results from differential mobilization of early stem cells with enhanced homing and long-term repopulating capacity. In addition, homing and engraftment of GROβΔ4-mobilized cells is less dependent on the SDF-1α/CXCR4 axis.


Sign in / Sign up

Export Citation Format

Share Document