scholarly journals Involvement of NFAT Transcription Factors in NK Cell Reactivity

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1344-1344 ◽  
Author(s):  
Kathrin Rothfelder ◽  
Melanie Märklin ◽  
Julia Wild ◽  
Daniela Dörfel ◽  
Lothar Kanz ◽  
...  

Abstract NK cells are lymphoid components of innate immunity and play an important role in tumor immunosurveillance. One of the major transcriptional regulators in lymphoid cells is NFAT (Nuclear Factor of Activated T Cells), as highlighted by its important role in T and B cell development and function. With regard to NK cells, available data indicate that NFAT is dispensable for development. However, several lines of evidence including the observation that the immunosuppressive drugs cyclosporin A and tacrolimus, which mediate their effects through inhibition of calcineurin and consecutively NFAT, influence NK reactivity implicate a role of this family of transcription factors in NK cell reactivity and function. Here we employed different genetic mouse models on the C57BL/6 background to directly study the functional role of NFAT in NK cells. We found that except for NFAT3 mRNA and protein of all family members (NFAT 1, 2, 4 and 5) was expressed in resting NK cells of wild type (WT) mice with NFAT1, 2 and 4 being most abundantly detectable. When we employed NK cells with knockout (KO) of NFAT 1, 2, and 4 in comparative in vitro analyses, we surprisingly found that lack of NFAT resulted in enhanced NK cell activation, degranulation and release of immunomodulatory cytokines like IFN-γ after co-culture with YAC-1 target cells as well as increased production of granzyme B and perforin after cytokine activation. The inhibitory effect of NFAT on NK cell effector function was further confirmed in vivo by employing WT and germ line NFAT KO animals in the syngeneic B16 melanoma model, which revealed a significantly reduced metastatic burden in NFAT KO mice. Depletion of NK cells in this model system in turn resulted in increased metastasis, however, with WT animals displaying significantly higher metastatic burden compared to NFAT KO mice. As this pointed to the fact that NFAT influences metastasis via both NK-dependent and independent mechanisms, we further generated mice with a NK cell-specific (conditional Ncr1-Cre dependent) NFAT2 KO. When these animals were employed again in analyses of B16 lung metastasis, comparative analyses with WT animals confirmed the inhibitory effect of NFAT on NK tumor immunosurveillance. Taken together, these results provide the first direct evidence for the functional involvement of NFAT in NK cell antitumor reactivity and, in contrast to T and B cells, identify NFAT as a negative regulator of NK cell function. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3785-3785
Author(s):  
Julia Salih ◽  
Lothar Kanz ◽  
Helmut R Salih ◽  
Matthias Krusch

Abstract Abstract 3785 Poster Board III-721 FLT3 is a receptor tyrosine kinase with an important role in hematopoietic progenitor cell survival and proliferation. The discovery of internal tandem duplication mutations (ITD) in FLT3 was a major breakthrough in understanding the role of abnormally activated FLT3 in myeloid transformation. Between 15% and 34% of AML patients show FLT3-ITD mutations, and thus the inhibition of FLT3 in combination with chemotherapeutic agents may be a promising stragety in the treatment of Acute Myeloid Leukemia (AML). Several protein kinase inhibitors (PKI) targeting FLT3 like e.g. Midostaurin, Sunitinib, Sorafenib, and TKI258 are currently under preclinical and/or clinical evaluation (http://clinicaltrials.gov/ct2/results?term=AML+and+FLT3). Since those PKI, besides targeting their eponymous enzyme FLT3, also inhibit signaling via other molecules they may impair the effector function of various components of anti-tumor immunity. NK cells as part of the innate immune system play an important role in the immune surveillance of tumors due to their ability to directly kill target cells and to shape adaptive immune responses by secreting cytokines like IFN-γ. Clinical evidence for the particularly important role of NK cells in leukemia has recently been provided by studies of haploidentical stem cell transplantation (Ruggeri et al., Science 2002). We report here that CD107a expression as a surrogate marker for degranulation of NK cells within PBMC is inhibited by pharmacological concentrations of Sorafenib (10μg/ml) and Midostaurin (2μg/ml), but not by Sunitinib (200ng/ml) and TKI258 (125ng/ml). In line, pharmacological concentrations of Sunitinib and TKI258 did not affect NK cell cytotoxicity and IFN-γ production in cocultures with leukemia cells. Sorafenib and Midostaurin caused a clear concentration-dependent inhibition of NK cell cytokine production in response to target cells both in resting and in IL-2 activated state (92% and 66%, respectively at plasma peak levels). Furthermore, pharmacological concentrations of Sorafenib and Midostaurin also reduced lysis of leukemia cells by NK cells (54% and 58%, respectively, E:T ratio 10:1) and thus generally compromised NK cell reactivity. Analysis of NK cell signaling revealed that Sorafenib, but not Midostaurin decreased phosphorylation of PI3K and ERK which are important regulators of NK cell reactivity. Thus, Midostaurin inhibits yet undefined signaling events which are crucial for NK effector functions, but are independent of the “classical” PI3K – Rac – PAK – MEK – ERK pathway and are presently under study. Moreover, in light of the important role of NK cells in the immune surveillance of leukemia and the differential influence of clinically used FLT3-inhibitors on NK cell functions our data indicate that the choice and dosing of the most suitable compound in the treatment of AML requires further characterization and careful consideration. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3767-3775 ◽  
Author(s):  
Laura Chiossone ◽  
Chiara Vitale ◽  
Francesca Cottalasso ◽  
Sara Moretti ◽  
Bruno Azzarone ◽  
...  

Abstract Steroids have been shown to inhibit the function of fresh or IL-2–activated natural killer (NK) cells. Since IL-15 plays a key role in NK-cell development and function, we comparatively analyzed the effects of methylprednisolone on IL-2– or IL-15–cultured NK cells. Methylprednisolone inhibited the surface expression of the major activating receptors NKp30 and NKp44 in both conditions, whereas NK-cell proliferation and survival were sharply impaired only in IL-2–cultured NK cells. Accordingly, methylprednisolone inhibited Tyr phosphorylation of STAT1, STAT3, and STAT5 in IL-2–cultured NK cells but only marginally in IL-15–cultured NK cells, whereas JAK3 was inhibited under both conditions. Also, the NK cytotoxicity was similarly impaired in IL-2– or IL-15–cultured NK cells. This effect strictly correlated with the inhibition of ERK1/2 Tyr phosphorylation, perforin release, and cytotoxicity in a redirected killing assay against the FcRγ+ P815 target cells upon cross-linking of NKp46, NKG2D, or 2B4 receptors. In contrast, in the case of CD16, inhibition of ERK1/2 Tyr phosphorylation, perforin release, and cytotoxicity were not impaired. Our study suggests a different ability of IL-15–cultured NK cells to survive to steroid treatment, thus offering interesting clues for a correct NK-cell cytokine conditioning in adoptive immunotherapy.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


1995 ◽  
Vol 181 (3) ◽  
pp. 1133-1144 ◽  
Author(s):  
J E Gumperz ◽  
V Litwin ◽  
J H Phillips ◽  
L L Lanier ◽  
P Parham

Although inhibition of natural killer (NK) cell-mediated lysis by the class I HLA molecules of target cells is an established phenomenon, knowledge of the features of class I molecules which induce this effect remains rudimentary. Using class I alleles HLA-B*1502 and B*1513 which differ only at residues 77-83 which define the Bw4 and Bw6 serological epitopes, we tested the hypothesis that the presence of the Bw4 epitope on class I molecules determines recognition by NKB1+ NK cells. HLA-B*1513 possesses the Bw4 epitope, whereas B*1502 has the Bw6 epitope. Lysis by NKB1+ NK cell clones of transfected target cells expressing B*1513 as the only HLA-A, -B, or -C molecule was inhibited, whereas killing of transfectants expressing B*1502 was not. Addition of an an anti-NKB1 monoclonal antibody reconstituted lysis of the targets expressing B*1513, but did not affect killing of targets bearing B*1502. The inhibitory effect of B*1513 could be similarly prevented by the addition of an anti-class I monoclonal antibody. These results show that the presence of the Bw4 epitope influences recognition of HLA-B molecules by NK cells that express NKB1, and suggest that the NKB1 molecule may act as a receptor for Bw4+ HLA-B alleles. Sequences outside of the Bw4 region must also affect recognition by NKB1+ NK cells, because lysis of transfectants expressing HLA-A*2403 or A*2501, which possess the Bw4 epitope but are in other ways substantially different from HLA-B molecules, was not increased by addition of the anti-NKB1 antibody. Asparagine 86, the single site of N-linked glycosylation on class I molecules, is in close proximity to the Bw4/Bw6 region. The glycosylation site of the Bw4-positive molecule B*5801 was mutated, and the mutant molecules tested for inhibition of NKB1+ NK cells. Inhibition that could be reversed by addition of the anti-NKB1 monoclonal antibody was observed, showing the presence of the carbohydrate moiety is not essential for class I recognition by NKB1+ NK cell clones.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8571-8571
Author(s):  
Ines Esteves Domingues Pires Da Silva ◽  
Sonia Jimenez-Baranda ◽  
Anne Gallois ◽  
Vijay Kuchroo ◽  
Iman Osman ◽  
...  

8571 Background: The concept of CD8+ T cell exhaustion in the context of metastatic cancer has been reinforced by the recent success of immunotherapies targeting the exhaustion markers CTLA-4 and PD-1 in advanced melanoma. T-cell immunoglobulin 3 (Tim-3), another exhaustion marker, is also expressed in natural killer (NK) cells, however its role is still unknown. Recent reports have shown that NK cells, innate immune cells that eliminate tumors through cytotoxicity and IFN-g production, are functionally impaired in advanced melanoma patients, although no receptor has been linked with that phenotype so far. In this study, we characterize the role of Tim-3 in NK cells, particularly in the presence of its natural ligand, Galectin-9 (Gal-9), that is known to be expressed/secreted by some tumor cells including melanoma. Methods: We compared 20 advanced melanoma donors NK cells with 40 healthy donors NK cells as it relates to Tim-3 expression (by flow cytometry) and function (cytotoxicity, IFN-γ production and proliferation). NK cells cytotoxicity was measured by lamp-1 expression, and two different target cells were used: i) K562 cells (Gal-9-) and ii) Gmel Gal-9+ and Gmel Gal-9- sorted melanoma cells. Proliferation was quantified by CFSE after 6 days in the presence of rhIL-2. Recombinant rhGal9 effect was tested in cytotoxicity and IFN-γ production. Results: Melanoma patients NK cells express higher levels of Tim-3 compared to healthy donors NK cells (p<0.05). Melanoma patients NK cells have a defect in cytotoxicity, proliferation and IFN-γ production. Tim-3 expression by itself (without engagement of specific ligands) does not negatively affect NK cell functions (p<0.05). However, when rhGal9 is added to the system, a decrease in NK cell cytotoxicity and IFN-γ production (p<0.05) was observed. Finally, the expression of Gal-9 by the target cells induces a defect in NK cell cytotoxicity (Gmel Gal-9+ vs Gmel Gal-9-). Conclusions: These data suggest that advanced melanoma patients NK cells are exhausted, although it still remains unclear if Tim-3 is involved in this phenotype. In addition,the expression/secretion of Galectin-9, immunosuppressive for NK cells, may be a possible mechanism for tumors to evade immune surveillance.


2013 ◽  
Vol 210 (6) ◽  
pp. 1167-1178 ◽  
Author(s):  
Georg Gasteiger ◽  
Saskia Hemmers ◽  
Matthew A. Firth ◽  
Audrey Le Floc’h ◽  
Morgan Huse ◽  
...  

The emergence of the adaptive immune system took a toll in the form of pathologies mediated by self-reactive cells. Regulatory T cells (T reg cells) exert a critical brake on responses of T and B lymphocytes to self- and foreign antigens. Here, we asked whether T reg cells are required to restrain NK cells, the third lymphocyte lineage, whose features combine innate and adaptive immune cell properties. Although depletion of T reg cells led to systemic fatal autoimmunity, NK cell tolerance and reactivity to strong activating self- and non-self–ligands remained largely intact. In contrast, missing-self responses were increased in the absence of T reg cells as the result of heightened IL-2 availability. We found that IL-2 rapidly boosted the capacity of NK cells to productively engage target cells and enabled NK cell responses to weak stimulation. Our results suggest that IL-2–dependent adaptive-innate lymphocyte cross talk tunes NK cell reactivity and that T reg cells restrain NK cell cytotoxicity by limiting the availability of IL-2.


1989 ◽  
Vol 169 (4) ◽  
pp. 1373-1389 ◽  
Author(s):  
W H Chambers ◽  
N L Vujanovic ◽  
A B DeLeo ◽  
M W Olszowy ◽  
R B Herberman ◽  
...  

To study the cellular structures involved in NK and lymphokine-activated killer (LAK) cell function, we have produced a panel of mAbs that modulate the cytolytic function of a population of cells with LAK activity that derive from large granular lymphocyte (LGL)/NK cells (adherent LAK [A-LAK] cells). In this report, we describe an mAb (3.2.3; IgG1k) that recognizes a triggering structure that is expressed on rat LGL/NK cells and A-LAK cells. This epitope is also expressed on polymorphonuclear leukocytes (PMN). The expression of the epitope identified by mAb 3.2.3 increased progressively on A-LAK cells after culture in the presence of rIL-2. mAb 3.2.3 enhanced the cytolytic activity of NK and A-LAK cells against FcR+ target cells, but not FcR- target cells. However, this effect was not induced by F(ab')2 fragments of 3.2.3. This antibody also induced the release of N-alpha-benzyloxycarbonyl-L-lysine thiobenzy esteresterase by A-LAK cells. These data suggest that the epitope identified by mAb 3.2.3 is on a triggering structure expressed on rat NK cells and A-LAK cells. The expression of the epitope recognized by mAb 3.2.3 on LGL/NK cells and PMN suggests that this structure may be analogous to that identified by the anti-CD16 (-FcR) mAbs. However, the molecule immunoprecipitated by mAb 3.2.3 was a 60-kD dimer composed of two 30-kD chains. These data suggest that mAb 3.2.3 recognizes a unique triggering structure. As mAb 3.2.3 is the first antibody recognizing a determinant with functional significance, selectively expressed on both rat NK cells and A-LAK cells, it will be a useful tool for the study of NK cell ontogeny and function, and the development of cells with LAK activity from the NK cell compartment.


Sign in / Sign up

Export Citation Format

Share Document