Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function: evidence for different susceptibility of IL-2– versus IL-15–activated NK cells

Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3767-3775 ◽  
Author(s):  
Laura Chiossone ◽  
Chiara Vitale ◽  
Francesca Cottalasso ◽  
Sara Moretti ◽  
Bruno Azzarone ◽  
...  

Abstract Steroids have been shown to inhibit the function of fresh or IL-2–activated natural killer (NK) cells. Since IL-15 plays a key role in NK-cell development and function, we comparatively analyzed the effects of methylprednisolone on IL-2– or IL-15–cultured NK cells. Methylprednisolone inhibited the surface expression of the major activating receptors NKp30 and NKp44 in both conditions, whereas NK-cell proliferation and survival were sharply impaired only in IL-2–cultured NK cells. Accordingly, methylprednisolone inhibited Tyr phosphorylation of STAT1, STAT3, and STAT5 in IL-2–cultured NK cells but only marginally in IL-15–cultured NK cells, whereas JAK3 was inhibited under both conditions. Also, the NK cytotoxicity was similarly impaired in IL-2– or IL-15–cultured NK cells. This effect strictly correlated with the inhibition of ERK1/2 Tyr phosphorylation, perforin release, and cytotoxicity in a redirected killing assay against the FcRγ+ P815 target cells upon cross-linking of NKp46, NKG2D, or 2B4 receptors. In contrast, in the case of CD16, inhibition of ERK1/2 Tyr phosphorylation, perforin release, and cytotoxicity were not impaired. Our study suggests a different ability of IL-15–cultured NK cells to survive to steroid treatment, thus offering interesting clues for a correct NK-cell cytokine conditioning in adoptive immunotherapy.

Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4118-4125 ◽  
Author(s):  
Mariella Della Chiesa ◽  
Simona Carlomagno ◽  
Guido Frumento ◽  
Mirna Balsamo ◽  
Claudia Cantoni ◽  
...  

Abstract Tryptophan (Trp) catabolism mediated by indoleamine 2,3-dioxygenase (IDO) plays a central role in the regulation of T-cell–mediated immune responses. In this study, we also demonstrate that natural killer (NK)–cell function can be influenced by IDO. Indeed, l-kynurenine, a Trp-derived catabolite resulting from IDO activity, was found to prevent the cytokine-mediated up-regulation of the expression and function of specific triggering receptors responsible for the induction of NK-cell–mediated killing. The effect of l-kynurenine appears to be restricted to NKp46 and NKG2D, while it does not affect other surface receptors such as NKp30 or CD16. As a consequence, l-kynurenine–treated NK cells display impaired ability to kill target cells recognized via NKp46 and NKG2D. Instead, they maintain the ability to kill targets, such as dendritic cells (DCs), that are mainly recognized via the NKp30 receptor. The effect of l-kynurenine, which is effective at both the transcriptional and the protein level, can be reverted, since NK cells were found to recover their functional competence after washing.


Blood ◽  
2013 ◽  
Vol 121 (18) ◽  
pp. 3599-3608 ◽  
Author(s):  
Rizwan Romee ◽  
Bree Foley ◽  
Todd Lenvik ◽  
Yue Wang ◽  
Bin Zhang ◽  
...  

Key Points Activated NK cells loose CD16 (FcRγIII) and CD62L through a metalloprotease called ADAM17. Inhibition of ADAM17 enhances CD16 mediated NK cell function by preserving CD16 on the NK cell surface to enhance ADCC.


1989 ◽  
Vol 169 (4) ◽  
pp. 1373-1389 ◽  
Author(s):  
W H Chambers ◽  
N L Vujanovic ◽  
A B DeLeo ◽  
M W Olszowy ◽  
R B Herberman ◽  
...  

To study the cellular structures involved in NK and lymphokine-activated killer (LAK) cell function, we have produced a panel of mAbs that modulate the cytolytic function of a population of cells with LAK activity that derive from large granular lymphocyte (LGL)/NK cells (adherent LAK [A-LAK] cells). In this report, we describe an mAb (3.2.3; IgG1k) that recognizes a triggering structure that is expressed on rat LGL/NK cells and A-LAK cells. This epitope is also expressed on polymorphonuclear leukocytes (PMN). The expression of the epitope identified by mAb 3.2.3 increased progressively on A-LAK cells after culture in the presence of rIL-2. mAb 3.2.3 enhanced the cytolytic activity of NK and A-LAK cells against FcR+ target cells, but not FcR- target cells. However, this effect was not induced by F(ab')2 fragments of 3.2.3. This antibody also induced the release of N-alpha-benzyloxycarbonyl-L-lysine thiobenzy esteresterase by A-LAK cells. These data suggest that the epitope identified by mAb 3.2.3 is on a triggering structure expressed on rat NK cells and A-LAK cells. The expression of the epitope recognized by mAb 3.2.3 on LGL/NK cells and PMN suggests that this structure may be analogous to that identified by the anti-CD16 (-FcR) mAbs. However, the molecule immunoprecipitated by mAb 3.2.3 was a 60-kD dimer composed of two 30-kD chains. These data suggest that mAb 3.2.3 recognizes a unique triggering structure. As mAb 3.2.3 is the first antibody recognizing a determinant with functional significance, selectively expressed on both rat NK cells and A-LAK cells, it will be a useful tool for the study of NK cell ontogeny and function, and the development of cells with LAK activity from the NK cell compartment.


2020 ◽  
Vol 38 (1) ◽  
pp. 511-539
Author(s):  
Mathieu Mancini ◽  
Silvia M. Vidal

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ki-Hyun Park ◽  
Hyesun Park ◽  
Myungshin Kim ◽  
Yonggoo Kim ◽  
Kyungja Han ◽  
...  

Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1αβ, IFN-γ, and TNF-α, and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Jasmina M. Luczo ◽  
Sydney L. Ronzulli ◽  
Stephen M. Tompkins

Natural killer (NK) cells are part of the innate immunity repertoire, and function in the recognition and destruction of tumorigenic and pathogen-infected cells. Engagement of NK cell activating receptors can lead to functional activation of NK cells, resulting in lysis of target cells. NK cell activating receptors specific for non-major histocompatibility complex ligands are NKp46, NKp44, NKp30, NKG2D, and CD16 (also known as FcγRIII). The natural cytotoxicity receptors (NCRs), NKp46, NKp44, and NKp30, have been implicated in functional activation of NK cells following influenza virus infection via binding with influenza virus hemagglutinin (HA). In this review we describe NK cell and influenza A virus biology, and the interactions of influenza A virus HA and other pathogen lectins with NK cell natural cytotoxicity receptors (NCRs). We review concepts which intersect viral immunology, traditional virology and glycobiology to provide insights into the interactions between influenza virus HA and the NCRs. Furthermore, we provide expert opinion on future directions that would provide insights into currently unanswered questions.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


2008 ◽  
Vol 76 (4) ◽  
pp. 1719-1727 ◽  
Author(s):  
Semih Esin ◽  
Giovanna Batoni ◽  
Claudio Counoupas ◽  
Annarita Stringaro ◽  
Franca Lisa Brancatisano ◽  
...  

ABSTRACT Our previous studies demonstrated that Mycobacterium bovis bacillus Calmette-Guérin (BCG) can directly interact with human NK cells and induce the proliferation, gamma interferon production, and cytotoxic activity of such cells without the need for accessory cells. Thus, the aim of the present study was to identify the putative receptor(s) responsible for the recognition of BCG by human NK cells and potentially involved in the activation of NK cells. To this end, we first investigated the surface expression of three NK cell-activating receptors belonging to the natural cytoxicity receptor (NCR) family on highly purified human NK cells upon in vitro direct stimulation with BCG. An induction of the surface expression of NKp44, but not of NKp30 or NKp46, was observed after 3 and 4 days of in vitro stimulation with live BCG. The NKp44 induction involved mainly a particular NK cell subset expressing the CD56 marker at high density, CD56bright. In order to establish whether NKp44 could directly bind to BCG, whole BCG cells were stained with soluble forms of the three NCRs chimeric for the human immunoglobulin G (IgG) Fc fragment (NKp30-Fc, NKp44-Fc, NKp46-Fc), followed by incubation with a phycoerythrin (PE)-conjugated goat anti-human IgG antibody. Analysis by flow cytometry of the complexes revealed a higher PE fluorescence intensity for BCG incubated with NKp44-Fc than for BCG incubated with NKp30-Fc, NKp46-Fc, or negative controls. The binding of NKp44-Fc to the BCG surface was confirmed with immunogold labeling using transmission electron microscopy, suggesting the presence of a putative ligand(s) for human NKp44 on the BCG cell wall. Similar binding assays performed on a number of gram-positive and gram-negative bacteria revealed a pattern of NKp44-Fc binding restricted to members of the genus Mycobacterium, to the mycobacterium-related species Nocardia farcinica, and to Pseudomonas aeruginosa. Altogether, the results obtained indicate, for the first time, that at least one member of the NCR family (NKp44) may be involved in the direct recognition of bacterial pathogens by human NK cells.


1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


Sign in / Sign up

Export Citation Format

Share Document