scholarly journals IL-2–dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells

2013 ◽  
Vol 210 (6) ◽  
pp. 1167-1178 ◽  
Author(s):  
Georg Gasteiger ◽  
Saskia Hemmers ◽  
Matthew A. Firth ◽  
Audrey Le Floc’h ◽  
Morgan Huse ◽  
...  

The emergence of the adaptive immune system took a toll in the form of pathologies mediated by self-reactive cells. Regulatory T cells (T reg cells) exert a critical brake on responses of T and B lymphocytes to self- and foreign antigens. Here, we asked whether T reg cells are required to restrain NK cells, the third lymphocyte lineage, whose features combine innate and adaptive immune cell properties. Although depletion of T reg cells led to systemic fatal autoimmunity, NK cell tolerance and reactivity to strong activating self- and non-self–ligands remained largely intact. In contrast, missing-self responses were increased in the absence of T reg cells as the result of heightened IL-2 availability. We found that IL-2 rapidly boosted the capacity of NK cells to productively engage target cells and enabled NK cell responses to weak stimulation. Our results suggest that IL-2–dependent adaptive-innate lymphocyte cross talk tunes NK cell reactivity and that T reg cells restrain NK cell cytotoxicity by limiting the availability of IL-2.

Author(s):  
Dominic Lenz ◽  
Jens Pahl ◽  
Fabian Hauck ◽  
Seham Alameer ◽  
Meena Balasubramanian ◽  
...  

Abstract Purpose Biallelic pathogenic NBAS variants manifest as a multisystem disorder with heterogeneous clinical phenotypes such as recurrent acute liver failure, growth retardation, and susceptibility to infections. This study explores how NBAS-associated disease affects cells of the innate and adaptive immune system. Methods Clinical and laboratory parameters were combined with functional multi-parametric immunophenotyping methods in fifteen NBAS-deficient patients to discover possible alterations in their immune system. Results Our study revealed reduced absolute numbers of mature CD56dim natural killer (NK) cells. Notably, the residual NK cell population in NBAS-deficient patients exerted a lower potential for activation and degranulation in response to K562 target cells, suggesting an NK cell–intrinsic role for NBAS in the release of cytotoxic granules. NBAS-deficient NK cell activation and degranulation was normalized upon pre-activation by IL-2 in vitro, suggesting that functional impairment was reversible. In addition, we observed a reduced number of naïve B cells in the peripheral blood associated with hypogammaglobulinemia. Conclusion In summary, we demonstrate that pathogenic biallelic variants in NBAS are associated with dysfunctional NK cells as well as impaired adaptive humoral immunity.


2016 ◽  
Vol 311 (2) ◽  
pp. G313-G323 ◽  
Author(s):  
Gregory Noel ◽  
Muhammad Imran Arshad ◽  
Aveline Filliol ◽  
Valentine Genet ◽  
Michel Rauch ◽  
...  

The IL-33/ST2 axis plays a protective role in T-cell-mediated hepatitis, but little is known about the functional impact of endogenous IL-33 on liver immunopathology. We used IL-33-deficient mice to investigate the functional effect of endogenous IL-33 in concanavalin A (Con A)-hepatitis. IL-33−/− mice displayed more severe Con A liver injury than wild-type (WT) mice, consistent with a hepatoprotective effect of IL-33. The more severe hepatic injury in IL-33−/− mice was associated with significantly higher levels of TNF-α and IL-1β and a larger number of NK cells infiltrating the liver. The expression of Th2 cytokines (IL-4, IL-10) and IL-17 was not significantly varied between WT and IL-33−/− mice following Con A-hepatitis. The percentage of CD25+ NK cells was significantly higher in the livers of IL-33−/− mice than in WT mice in association with upregulated expression of CXCR3 in the liver. Regulatory T cells (Treg cells) strongly infiltrated the liver in both WT and IL-33−/− mice, but Con A treatment increased their membrane expression of ST2 and CD25 only in WT mice. In vitro, IL-33 had a significant survival effect, increasing the total number of splenocytes, including B cells, CD4+ and CD8+ T cells, and the frequency of ST2+ Treg cells. In conclusion, IL-33 acts as a potent immune modulator protecting the liver through activation of ST2+ Treg cells and control of NK cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cinzia Garofalo ◽  
Carmela De Marco ◽  
Costanza Maria Cristiani

Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.


2021 ◽  
Author(s):  
Sarah Nersesian ◽  
Stacey N Lee ◽  
Stephanie Grantham ◽  
Liliane Meunier ◽  
Laudine Communal ◽  
...  

Background: High grade serous cancer (HGSC) remains a highly fatal malignancy with less than 50% of patients surviving 5 years after diagnosis. Despite its high mutational burden, HGSC is relatively refractory to checkpoint immunotherapy, suggesting that additional features of the cancer and its interactions with the immune system remain to be understood. Natural killer (NK) cells may contribute to HGSC control, but the role(s) of this population or its subsets in this disease are poorly understood. Methods: We used a TMA containing duplicate treatment-naive tumors from 1145 patients with HGSC and a custom staining panel to simultaneously measure macrophages, T cells and NK cells, separating NK cells based on CD16a expression. Using pathologist-validated digital pathology, machine learning, computational analysis and Pearsons correlations, we quantitated infiltrating immune cell density, co-infiltration and co-localization with spatial resolution to tumor region. We compared the prognostic value of innate, general, and adaptive immune cell neighborhoods to define characteristics of HGSC tumors predictive for progression-free survival and used flow cytometry to define additional features of the CD16adim NK cell subset. Results: NK cells were observed in >95% of tumor cores. Intrastromal localization of CD16alow and CD16ahigh NK cells was associated with shorter and longer progression-free survival, respectively. CD16ahigh NK cells most frequently co-localized with T cells and macrophages; their proximity was termed an adaptive neighborhood. We find that tumors with more area represented by adaptive immune cell neighborhoods corresponded to superior progression free survival. In contrast, CD16alow NK cells did not co-infiltrate with other immune cell types, and expressed the ectonucleotidases, CD39 and CD73, which have been previously associated with poor prognosis in patients with HGSC. Conclusions: Progression-free survival for patients with HGSC may be predicted by the subset of NK cells within the tumor infiltrate (i.e. CD16ahigh vs. CD16alow). NK cell subtypes were associated predictable co-infiltrating and co-localizing leukocyte subsets, suggesting that their presence and activity may influence, or be influenced by the tumor microenvironment. Our data suggest that immunotherapeutic strategies for HGSC should consider the constitution of NK cell subsets and may benefit from mobilizing and activating CD16high NK cells.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 298
Author(s):  
Arnika K. Wagner ◽  
Ulf Gehrmann ◽  
Stefanie Hiltbrunner ◽  
Valentina Carannante ◽  
Thuy T. Luu ◽  
...  

Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A159-A159
Author(s):  
Michael Whang ◽  
Ming-Hong Xie ◽  
Kate Jamboretz ◽  
Hadia Lemar ◽  
Chao Guo ◽  
...  

BackgroundPeripheral blood natural killer (NK) cells are mature cytotoxic innate lymphocytes possessing an inherent capacity for tumor cell killing, thus making them attractive candidates for adoptive cell therapy. These NK cells are also amenable to CRISPR and chimeric antigen receptor (CAR) genomic engineering for enhanced functions. Moreover, NK cells possess an inherent capacity for off-the-shelf therapy since they are not known to cause graft-versus-host disease, unlike T cells. Presently, approved CAR cell therapy is custom-made from each patient‘s own T cells, a process that can limit patient pool, narrow therapeutic window, and contribute to product variability. In this study, we investigate whether peripheral blood NK cells from a selected donor can be edited, engineered, and expanded sufficiently for off-the-shelf use in a wide patient population.MethodsUsing the CRISPR/Cas9 system, we knocked out CISH expression in isolated peripheral blood NK cells from 3 healthy donors. Subsequently, we expanded edited NK cells by using IL-2 and sequential stimulations using NKSTIM, a modified K562 stimulatory cell line expressing membrane-bound form of IL-15 (mbIL-15) and 4-1BBL. IL-12 and IL-18 were added twice during expansion to drive memory-like NK cell differentiation. We transduced the expanded NK cells to express engineered CD19-targeted CAR and mbIL-15 during an interval between the first and second NKSTIM pulses. We assessed NK cell cytotoxicity against Nalm6 target cells by IncuCyte.ResultsIsolated peripheral blood NK cells from 3 healthy donors were successfully edited using CRISPR/Cas9, engineered to express high levels of CAR, extensively expanded using a series of NKSTIM pulses in the presence of IL-2, and differentiated into memory-like NK cells using IL-12 and IL-18. Interestingly, NK cells from the 3 donors exhibited distinct outcomes. NK cells from one donor reached a peak expansion limit of approximately 7-million-fold before undergoing contraction whereas NK cells from two donors continued to expand over the length of the study surpassing 100-million-fold expansion, without appearing to have reached a terminal expansion limit. At the end of the study, NK cells from one donor exceeded 1-billion-fold expansion and maintained 88% cytolytic activity compared to Nkarta’s standard process control in a 72-hour IncuCyte assay.ConclusionsIn this study, we demonstrate that healthy donor-derived peripheral blood NK cells are capable of expanding over billion-fold while maintaining potency. These results provide a rationale for the development of off-the-shelf CAR NK cell therapies using NK cells from donors selected to provide optimal product characteristics.Ethics ApprovalHuman samples were collected with written informed consent by an approved vendor.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2212-2212
Author(s):  
Matthias Krusch ◽  
Mercedes Kloss ◽  
Andrea Peterfi ◽  
Ingrid Kumbier ◽  
Lothar Kanz ◽  
...  

Abstract Reciprocal Interactions of NK cells with Dendritic Cells (DC) can induce activation of NK cells, maturation or lysis of DC and influence subsequent adaptive immune responses. However, little is known about the interaction of peripheral blood monocytes with NK cells, especially regarding involved immunoregulatory surface molecules. Here we report that monocytes express ligands for the activating immunoreceptor NKG2D expressed on NK cells upon treatment with various stimuli. Incubation of monocytes with TNF, GM-CSF, IFN-g and various TLR ligands (LPS, Pam3Cys, R848, PolyI:C) induced surface expression of the NKG2D ligands (NKG2DL) MICA and to a lesser extent MICB, but no relevant changes of ULBP molecules, as determined by FACS analysis. Expression was confirmed by quantitative PCR analysis of NKG2DL mRNA induction. To elucidate the functional consequences of NKG2DL expression on monocytes for NK cell functions we performed coculture assays of monocytes and autologous NK cells. NKG2DL expression on stimulated monocytes lead to a significant induction of IFN-g release into the culture supernatant by NK cells as determined by ELISA. This IFN-g release was blocked by addition of a NKG2D-Ig fusionprotein, but not by isotype control demonstrating that the induction of NK cell IFN-g production was in fact specifically due to NKG2DL expression on monocytes. Since both monocytes and NK cells rapidly migrate to sites of inflammation, and monocytes display a high plasticity regarding their function and maturation which is influenced by IFN-g, our data indicate that NKG2DL expression on monocytes might not only mediate reciprocal activation of NK cells and monocytes but also might influence other components of the innate and adaptive immune system and thereby determine the course of subsequent immune reactions.


2019 ◽  
Author(s):  
Andreas Kupz ◽  
Saparna Pai ◽  
Paul R. Giacomin ◽  
Jennifer A. Whan ◽  
Robert A. Walker ◽  
...  

AbstractToxoplasmic encephalitis is an AIDS-defining condition in HIV+individuals. The decline of IFN-γ-producing CD4+T cells in AIDS is a major contributing factor in reactivation of quiescentToxoplasma gondiito an actively replicating stage of infection. Hence, it is important to identify CD4-independent mechanisms to control acuteT. gondiiinfection. Here we have investigated the targeted expansion and regulation of IFN-γ production by CD8+T cells, DN T cells and NK cells in response toT. gondiiinfection using IL-2 complex (IL2C) pre-treatment in an acutein vivomouse model. Our results show that expansion of CD8+T cells, DN T cells and NK cell by S4B6 IL2C treatment increases survival rates of mice infected withT. gondiiand this increased survival is dependent on both IL-12- and IL-18-driven IFN-γ production. Processing and secretion of IFN-γ-inducing, bioactive IL-18 is dependent on the sensing of active parasite invasion by multiple redundant inflammasome sensors in multiple hematopoietic cell types but independent fromT. gondii-derived dense granule (GRA) proteins. Our results provide evidence for a protective role of IL2C-mediated expansion of CD8+T cells, DN T cells and NK cells in murine toxoplasmosis and may represent a promising adjunct therapy for acute toxoplasmosis.Author SummaryA third of the world’s population is chronically infected with the parasiteToxoplasma gondii. In most cases the infection is asymptomatic, but in individuals suffering from AIDS, reactivation of brain and muscle cysts containingT. gondiiis a significant cause of death. The gradual decline of CD4 T cells, the hallmark of AIDS, is believed to be a major contributing factor in reactivation ofT. gondiiinfection and the development of acute disease. In this study, we show that targeted expansion of non-CD4 immune cell subsets can prevent severe disease and premature death via increased availability of interferon gamma-producing immune cells. We also demonstrate that the upstream signaling molecule interleukin-18 is required for the protective immune response by non-CD4 cells and show that the sensing of active parasite invasion by danger recognition molecules is crucial. Our findings reveal that targeted cell expansion may be a promising therapy in toxoplasmosis and suggests that the development of novel intervention strategies targeting danger recognition pathways may be useful against toxoplasmosis, particularly in the context of AIDS.


Sign in / Sign up

Export Citation Format

Share Document