scholarly journals Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Mediates and Sustains NF-κb Constitutive Activation in LGL Leukemia Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2762-2762
Author(s):  
Jun Yang ◽  
Francis R Leblanc ◽  
Shubha Dighe ◽  
Susan B. Nyland ◽  
David J. Feith ◽  
...  

Abstract Large granular lymphocyte (LGL) leukemia results from clonal expansion of CD3+ cytotoxic T-lymphocytes (CTL) or CD3-natural killer (NK) cells. Chronic antigen stimulation promotes long-term survival of LGL leukemia cells through constitutive activation of multiple survival pathways, leading to global dysregulation of apoptosis. Clinical manifestations of LGL leukemia include neutropenia, anemia and rheumatoid arthritis. Treatment for LGL leukemia patients relies on immunosuppressives such as methotrexate and is not curative. No standard therapy has been established. We reported that nuclear factor kappa B (NF-kB) is central to the leukemic LGL survival network, but the mechanisms of constitutive NF-kB activation in LGL leukemia are undefined. TNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis and activates NF-kB via binding to TRAIL receptor (TR) 1, 2 and decoy receptor 2 (DcR2). DcR2 is uniquely unable to transduce downstream death signals yet retains NF-kB transduction activity. The mechanisms of TRAIL expression and regulation in LGL leukemia are unknown. Thus the current study investigates these mechanisms and their potential therapeutic applications, with the use of NF-kB inhibitors ixazomib and bortezomib, in LGL leukemia. Methods: LGL leukemia cell lines TL1 (T-LGL) and NKL (NK-LGL), peripheral blood mononuclear cells (PBMC) from LGL leukemia patients, and PBMC from normal donors were studied. NF-kB DNA binding activity was determined by EMSA. Results were confirmed using probe-based NF-kB (p50/65) transcription factor assay and immunocytochemistry (ICC). Serum TRAIL levels were detected by ELISA. Cellular TRAIL expression was determined by real-time PCR, western blot and ICC. DcR2 and Mcl-1 siRNA knock-down was performed with electroporation. Flow cytometry was used to detect TR 1-3 and DcR2 expression and apoptosis. Results: The average serum levels of TRAIL in LGL leukemia patients were nearly 4-fold higher than normal (NL) control values (p ≤ 0.0001). Data from RT-PCR (p ≤ 0.04), western blot and ICC revealed that LGL leukemia cells were the major source of TRAIL overexpression. Identical expression levels of TR1, 2 and 3 were observed in PBMC from LGL leukemia patients and from NL controls. Like normal PBMC, LGL leukemia cells were resistant to TRAIL-induced apoptosis. In contrast, the expression frequency of DcR2 was at least 4-fold greater in LGL leukemia PBMC compared to NL control, and it correlated to the percentage of circulating LGL leukemia cells. We found that TRAIL activates NF-kB and NF-kB downstream target genes, including TRAIL and McL-1, in LGL leukemia samples. To confirm that TRAIL is responsible for constitutive NF-kB activation in LGL leukemia, T-LGL leukemia PBMC were treated with pooled sera from 3 each of either NL controls or T-LGL leukemia patients. Leukemia sera increased NF-kB activity on EMSA, and this effect was completely blocked by TRAIL neutralizing antibody. DcR2 siRNA knockdown specifically decreased RelA and NF-kB1 (p105/p50) levels in TL1 and NKL cells. Mcl-1 siRNA mediated increased apoptosis in the same cell lines. Likewise, ixazomib and bortezomib facilitated leukemia-selective apoptosis in LGL leukemia cell lines and in patient PBMC, via inhibition of NF-kB activity and of downstream targets (ixazomib, p≤0.0001; bortezomib, p≤0.03). Additionally, caspase-3 and PARP cleavage were observed in LGL leukemia cells treated with ixazomib or bortezomib. Serum TRAIL levels in LGL leukemia patients were significantly lower in methotrexate responders versus non-responders, corresponding with reduced NF-kB DNA binding activity and increased absolute neutrophil counts, indicative of treatment response. Conclusion: These data indicate that expression of DcR2 and constitutive activation of NF-kB are responsible for TRAIL resistance in leukemic LGLs. TRAIL triggers prolonged NF-kB activation via interaction with DcR2, and activated NF-kB in turn promotes further TRAIL production in leukemic LGLs, creating a TRAIL autocrine regulatory loop. Inhibition of NF-kB activity with ixazomib and bortezomib interrupts this loop, impairs expression of Mcl-1 and induces apoptosis of leukemia cells. Our preclinical findings provide a solid framework for clinical evaluations of ixazomib and bortezomib in the treatment of LGL leukemia. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2227-2227
Author(s):  
Jing Yu ◽  
Shaowei Qiu ◽  
Qiufu Ge ◽  
Ying Wang ◽  
Hui Wei ◽  
...  

Abstract Introduction Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the flaws of conventional chemotherapy drugs and improve their efficacy. Histone deacetylase inhibitors (HDACi) and DNA damaging agents have showed synergistic effects in recent studies. In this study, we reported a novel hybrid NL-101 that combines chemo-active groups from suberoylanilide hydroxamic acid (SAHA) and bendamustine, the typical HDACi and alkylating agent respectively.The anticancer effect of NL-101 and its possible mechanisms were investigated in human leukemia cell lines and primary leukemia cells. Methods MTT assay was performed to determine the proliferation of Kasumi-1 and NB4 cells treated with NL-101. Cell cycle distribution and apoptosis rate were detected by flow cytometry. Western-blot analysis was used to analyze the level of acetylated H3 as well as apoptotic-related proteins including γ-H2AX, PARP, caspase-3, Bax, Bcl-2 and Bcl-xL. Bone marrow mononuclear cells of AML patients were isolated by density gradient centrifugation. Wright staining and Western blot were performed to determine the inducing apoptosis effect. Results NL-101 inhibited the proliferation of leukemia cell lines Kasumi-1 and NB4 cells with similar IC50 to that of SAHA. Cell cycle analysis indicated that NL-101 induced S phase arrest. As expected, apoptotic cell death was observed in response to NL-101 treatment. After treatment with 2 µmol/L NL-101 for 48 hours, the apoptosis rate of Kasumi-1 and NB4 cells were (60.19±12.01)% and (49.43±11.61)%, respectively. Western blot analysis showed that NL-101 exposure could induce the accumulation of acetylated Histone H3 and γ-H2AX as the biomarker of DNA double-strand breaks. Anti-apoptotic protein Bcl-xL involved in mitochondrial death pathway was also decreased. Moreover, NL-101 induced apoptosis with a low micromolar IC50 in various leukemia cell lines but not in nonmalignant cell line HEK293. The efficacy of NL-101 was also tested in human primary leukemia cells and all the treated samples exhibited apoptosis confirmed by the morphological examination and expression of apoptotic markers. Conclusions The novel SAHA-bendamustine hybrid NL-101 inhibited the proliferation and induced apoptotic cell death of leukemia cell lines and primary leukemia cells. It presented the properties of both HDAC inhibition and DNA damaging. Down-regulation of Bcl-xL was also involved in the apoptosis induction. These results indicated that NL-101 might be a potential compound for the treatment of leukemia. Disclosures Wang: Bristol Myers Squibb: Consultancy; Novartis: Consultancy.


2021 ◽  
Vol 22 (8) ◽  
pp. 4265
Author(s):  
Jang Mi Han ◽  
Hong Lae Kim ◽  
Hye Jin Jung

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Toshiki Ochi ◽  
Hiroshi Fujiwara ◽  
Koichiro Suemori ◽  
Taichi Azuma ◽  
Yoshihiro Yakushijin ◽  
...  

Abstract Aurora-A kinase (Aur-A) is a member of the serine/threonine kinase family that regulates the cell division process, and has recently been implicated in tumorigenesis. In this study, we identified an antigenic 9–amino-acid epitope (Aur-A207-215: YLILEYAPL) derived from Aur-A capable of generating leukemia-reactive cytotoxic T lymphocytes (CTLs) in the context of HLA-A*0201. The synthetic peptide of this epitope appeared to be capable of binding to HLA-A*2402 as well as HLA-A*0201 molecules. Leukemia cell lines and freshly isolated leukemia cells, particularly chronic myelogenous leukemia (CML) cells, appeared to express Aur-A abundantly. Aur-A–specific CTLs were able to lyse human leukemia cell lines and freshly isolated leukemia cells, but not normal cells, in an HLA-A*0201–restricted manner. Importantly, Aur-A–specific CTLs were able to lyse CD34+ CML progenitor cells but did not show any cytotoxicity against normal CD34+ hematopoietic stem cells. The tetramer assay revealed that the Aur-A207-215 epitope–specific CTL precursors are present in peripheral blood of HLA-A*0201–positive and HLA-A*2402–positive patients with leukemia, but not in healthy individuals. Our results indicate that cellular immunotherapy targeting Aur-A is a promising strategy for treatment of leukemia.


2019 ◽  
Author(s):  
Katerina Hlozkova ◽  
Alena Pecinova ◽  
David Pajuelo Reguera ◽  
Marketa Simcikova ◽  
Lenka Hovorkova ◽  
...  

Abstract Background Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs.Methods Altogether, 19 leukemia cell lines and primary leukemia cells from 11 patients were used. Glycolytic function and mitochondrial respiration were measured using Seahorse bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence.Results We characterized the basal metabolic state of the cells derived from different leukemia subtypes using cell lines and primary samples and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile, which is mainly driven by their hematopoietic lineage of origin from which they derived. However, majority of lymphoid leukemia cell lines and patients with lower sensitivity to L-asparaginase clustered regardless their hematopoietic phenotype together with myeloid leukemias. Furthermore, we observed a correlation of specific metabolic parameters with sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in other tested cytostatic drugs.Conclusions These data support the prominent role of the cell metabolism in the treatment effect of L-asparaginase. Based on these findings metabolic profile could identify leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1488-1488 ◽  
Author(s):  
Ebenezer David ◽  
Rajni Sinha ◽  
Claire Torre ◽  
Jonathan L. Kaufman ◽  
Sagar Lonial

Abstract Introduction: Novel agents as anti-cancer therapy are used in the setting of specific molecular abnormalities that provide a survival advantage for malignant cells. One such agent, tipifarnib, is theoretically targeted at Ras mutations which are present in a number of different human cancers. Our previous experience with the FTIs (David et al, in press Blood) has demonstrated that they are ideal agents to combine with other targeted agents. We have investigated the combination of the AKT inhibitor perifosine with tipifarnib in human leukemia and lymphoma cell lines with the hypothesis that the combination of 2 targeted agents will disrupt separate survival pathways and ultimately result in synergistic tumor cell death. Methods: In this study we used the human leukemia cell lines HL-60, Jurkat, and the lymphoma cell line HT. Western blot analysis was used to assess for the effect of either single agent perifosine, tipifarnib, or the combination on AKT, p-AKT, PDK-1, and caspase cleavage. Flow cytometry was utilized to assess for Annexin V staining following combination therapy. Results:Dose escalation studies demonstrated that doses of tipifarnib up to 5μm demonstrated a significant cell death in HL-60 and HT cells. Perifosine doses of 1–5uM also induced cell death in both HL-60 and HT cells. When apoptosis was assessed using western blot analysis of caspase 3 activity and cleavage, the combination of perifosine and tipifarnib demonstrated significant apoptosis using low doses of both agents. The apoptosis was associated with downregulation of phos-PDK1, with a resultant downregulation in p-AKT. The level of phos-PDK1 was completely inhibited in less than 24 hrs in both the HL-60 and HT cell lines in combination than when either agent was given alone. Conclusion: The combination of perifosine, and AKT targeted agent, with tipifarnib, a Ras targeted agent, appear to induce significant cell death in lymphoma and leukemia cell lines with rapid downregulation of p-AKT via the PDK-1 pathway. This apoptosis occurs in vitro using concentrations well below those that have been achieved in current clinical trials using these agents. Additional studies are being carried out to further delineate the mechanism of synergy as well as to further explore the impact of sequence of administration using this combination. Further studies are also planned to xplore the impact of the combination on primary human leukemia and lymphoma cells from the blood and bone marrow.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1366-1366 ◽  
Author(s):  
Miki Kobayashi ◽  
Satoki Nakamura ◽  
Takaaki Ono ◽  
Yuya Sugimoto ◽  
Naohi Sahara ◽  
...  

Abstract Background: The conserved Aurora family kinases, a family of mitotic serine/threonine kinases, have three members (Aurora-A, -B and -C) in mammalian cells. The Aurora kinases are involved in the regulation of cell cycle progression, and alterations in their expression have been shown to associate with cell malignant transformation. Aurora A localizes to the centrosomes during anaphase, and it is required for mitotic entry. Aurora B regulates the formation of a stable bipolar spindle-kinetochore attachment in mitosis. The function of Aurora-C in mammalian cells has not been studied extensively. In this study, we investigated that human leukemia cells expressed all 3 Aurora kinases at both protein and mRNA level, and the mechanisms of cell cycle regulation by knock down of Aurora C in leukemia cells. Methods: In this study, we used the 7 human leukemia cell lines, K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells. The expression levels of mRNA and proteins of Aurora kinases were evaluated by RT-PCR and western blot. The analysis of proliferation and cell cycle were performed by MTT assay and FCM, respectively. Results: The mRNA of Aurora-A and Aurora-B are highly expressed in human leukemia cell lines (K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells), while the mRNA of Aurora C is not only expressed highly in all cells. In contrast, an increase in the protein level of the 3 kinases was found in all cell lines. These observations suggested posttranscriptional mechanisms, which modulate the expression of Aurora C. In cell cycle analysis by flow cytometory, the knock down of Aurora C by siRNA induced G0/G1 arrest and apoptosis in leukemia cells, and increased the protein levels of p27Kip1 and decreased Skp2 by western blot. In MTT assay, it was revealed that the growth inhibition of leukemia cells transfected with siRNA Aurora C compared with leukemia cells untransfected with siRNA Aurora C. Moreover, We showed that Aurora C was associated with Survivin and directly bound to Survivin by immunoprecipitation and western blot. Conclusion: We found that human leukemia cells expressed all 3 members of the Aurora kinase family. These results suggest that the Aurora kinases may play a relevant role in leukemia cells. Among these Aurora kinases, Aurora C interacted with Survivin and prevented apoptosis of leukemia cells, and induced cell cycle progression. Our results showed that Aurora-C may serve as a key regulator in cell division and survival. These results suggest that the Aurora C kinase may play an important role in leukemia cells, and may represent a target for leukemia therapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 888-888 ◽  
Author(s):  
Okinaka Keiji ◽  
Satoki Nakamura ◽  
Isao Hirano ◽  
Takaaki Ono ◽  
Shinya Fujisawa ◽  
...  

Abstract [Background] FoxM1, a member of the Fox transcription factor family, plays an important cell cycle regulator of both the transition from G1 to S phase and progression to mitosis. FoxM1 expression was also found to be up-regulated in some solid tumors (basal cell carcinomas, hepatocellular carcinoma, and primary breast cancer). These results suggested that FoxM1 plays a role in the oncogenesis of malignancies. However, it is unknown whether FoxM1 expression contributes to the development or progression of leukemia cells. Therefore, we investigated how FoxM1 regulated the cell cycle of leukemia cells and the expression analysis of the FoxM1 gene in patients with acute leukemias. [Methods] The cells used in this study were human acute leukemia cell lines, U937 and YRK2 cells. Primary acute myeloblastic (25 AML (4 M1, 11 M2, 6 M4, 4 M5)) cells were obtained from the peripheral blood. Human normal mononuclear cells (MNCs) were isolated from peripheral blood (PB) of healthy volunteers after obtaining informed consents. For analysis of proliferation and mitotic regulatory proteins (p27, p21, Skp2, Cdc25B, Cyclin D1, Survivin, Aurora kinase B, and KIS) in leukemia cells, MTT assays and western blot were performed in all cell lines, which untransfected or transfected with siRNA FoxM1, respectively. For cell cycle analysis, flow cytometory analysis was performed in leukemia cells untransfected or transfected with siRNAFoxM1 by PI staining. For analysis of FoxM1 mRNA, quantitative RT-PCR was performed in all cell lines and clinical samples. [Results] In all leukemia cell lines, the expression of FoxM1B mRNA were significantly higher than normal MNCs. When transfected with the siRNA FoxM1 in leukemia cells, suppression of FoxM1 caused a mean 71% (range 62 to 80%) reduction in S phase cells and a mean 4.4-fold (range 3.2 to 5.6-fold) increase in G2/M phase cells compared to controls. MTT assay demonstrated that the proliferation of the siRNA FoxM1 transfected cells was inhibited compared to the untransfected cells. Moreover, FoxM1 knockdown by siRNA in leukemia cells reduced protein and mRNA expression of Aurora kinase B, Survivin, Cyclin D1, Skp2 and Cdc25B, while increased protein expression of p21and p27. In the clinical samples obtained from patients with acute leukemias, the FoxM1B gene was overexpressed in 22/25 (88%). The relative folds of FoxM1B gene expression were for AML: 2.83 compared to normal MNCs. [Conclusions] In this study, we report in the first time that FoxM1 is overexpressed in myeloid leukemia cells. These results demonstrated that expression of FoxM1 is an essential transcription factor for growth of leukemia cells, and regulate expression of the mitotic regulators. Moreover, we showed that FoxM1 induced the expression of KIS protein. Therefore, FoxM1 might be one of moleculer targets of therapy for acute leukemias.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1427-1427 ◽  
Author(s):  
Lorimar Ramirez ◽  
Melissa Singh ◽  
Joya Chandra

Abstract Abstract 1427 Histone deacetylase inhibitors (HDACi) are a class of emerging epigenetic therapies which are being used to treat cancer. Two HDACi (vorinostat and romidepsin) are FDA approved for cutaneous T-cell lymphoma. HDACi have been employed in clinical trials for acute leukemia, but single agent activity has been limited. Improved efficacy is observed when combined with other anticancer agents. In the current study we addressed acute leukemia models using vorinostat, a pan-HDACi that inhibits HDAC class I, II, and IV and entinostat, a newer HDACi that inhibits HDAC class I more specifically. These HDACi were combined with inhibition of another histone modifying enzyme: lysine specific demethylase 1 (LSD1). The LSD1 gene encodes a favin-dependent monoamine oxidase, which demethylates mono- and di-methylated lysines, specifically lysines 4 and 9 on histone 3 (H3K4 and H3K9), thus it is also involved in gene regulation through post-translational histone modification. LSD1 overexpression has been linked to human carcinogenesis in bladder carcinomas, lung cancer, and poorly differentiated neuroblastoma. However, it has not been studied in hematologic malignancies. Because LSD1 is structurally similar to monoamine oxidase (MAO), it has been shown that nonselective MAO inhibitors also inhibit LSD1. Here we employed tranylcypromine, a monoamine oxidase inhibitor (MAOi), as an irreversible LSD1 inhibitor. Recently published work from our laboratory has shown synergistic effects of combined HDAC and LSD1 inhibition in brain tumors (glioblastoma multiforme). Similar results have been published in breast cancer cells, but no work has been done in hematological malignancies. The objective of this study was to investigate the possible synergy of HDAC and LSD1 inhibitors in acute leukemia cells. LSD1 protein expression in several leukemia cells lines was analyzed by Western blot analysis. LSD1 was expressed in all leukemia cell lines tested, which included T-cell ALL (Jurkat, Sub-T1, MOLT4), B-cell ALL (JM-1,697), and Philadelphia chromosome positive ALL (Z33, Z119, Z181). To determine whether synergy exists between HDACi and LSD1 inhibitors, Jurkat cells were exposed to different concentrations of tranylcypromine and vorinostat or entinostat. After 24 hr, DNA fragmentation was assessed by propidium iodide (PI) staining followed by flow cytometric analysis. A combination index (CI) less than 1.0 is representative of synergism as measured by Calcusyn software. Results showed a synergistic effect on DNA fragmentation when combining the 2.5 μM dose of vorinostat with a range of tranylcypromine doses (1 mM CI= 0.78, 1.5 mM CI= 0.49, and 2 mM CI= 0.39). The same effect was observed with the combination of 2.5 μM entinostat with 2 mM tranylcypromine (CI=0.52). Viability studies performed with the same drug concentrations in conbination also showed statistically significant cell death. Additional acute leukemia cell lines, 697 and MOLT-4, also demonstrated significantly increased cell death with the combination relative to treatment with either agent alone. Since these agents inhibit histone deacetylation and lysine demethylation, we tested whether these histone modifications were promoted by combination treatment. Jurkat cell lysates were generated by acid extraction of histones and Western blot analysis was conducted. We demonstrated that in fact histone acetylation was increased with combination treatment, indicating that these modifications coordinately regulate each other in acute leukemia cells. A molecular target for LSD1 is p53, a tumor suppressor protein whose activity is regulated by lysine methylation and demethylation. Western blot analysis showed that p53 is downregulated in leukemia cells after exposure to the combination of HDAC and LSD1 inhibitors. Future studies will address if p53 downregulation is a trigger for the synergistic cell death. Taken together, our data shows the efficacy of combining LSD1 inhibitors with HDAC inhibitors in multiple acute leukemia models. Since tranylcypromine is also a FDA-approved agent, these results urge the design of a feasible and effective clinical trial combining LSD1 and HDAC inhibitors for acute leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1370-1370
Author(s):  
Krishan K. Sharma ◽  
Juan Felipe Rico ◽  
Duane C Hassane ◽  
Gabriela Chiosis ◽  
Monica L. Guzman

Abstract Abstract 1370 Stress-inducible heat shock protein 70 (HSP70) is a major cytoprotective factor and a molecular chaperone that interacts with HSP90 to form a multi-chaperone complex. Cancer cells are highly dependent on this complex due to their increased demand for protein synthesis. HSP70 overexpression inhibits apoptosis and has been associated with drug resistance. However, the contribution to drug resistance in AML of specific HSP70 isoforms remains unknown. As there is growing interest in therapeutically targeting HSP70, we investigated the expression of 7 different HSP70 isoforms in AML primary cells and leukemia cell lines and their response to a novel HSP70-inhbitor, YK5. A panel of 12 leukemia cell lines and 11 primary samples was used to determine the expression of HSP70 and their response to YK5. We also evaluated the changes to the HSP70 isoforms when exposed to either heat shock or YK5. We found MV4-11, MOLM-13, and U937 sensitive to YK5 (LD50 = 1.18μM, 1.03μM, and 2.31μM at 24 hours, respectively). In contrast, OCI-AML3, TUR and THP-1 were more resistant to the inhibitor. (LD50 = 9.92μM, 9.74μM, and 8.84μM at 24 hours, respectively). Non-tumor cells, however, were significantly less affected by treatment with YK5 (72% viable cord blood mononuclear cells after 24 hour treatment with 5μM YK5). We found that the cell surface expression of HSP70 was higher in both cell lines and primary samples when compared their normal counterparts. Furthermore, quantitative PCR revealed that cell lines with higher levels of HSPA1A and lower levels of HSPA6 demonstrated higher sensitivity to YK5. Interestingly, higher levels of HSPA1A and lower levels of HSPA6 were also found in primary AML samples when compared to CD34+ cord blood cells, consistent with the relative insensitivity of normal cells to YK5. We further discovered, mining publicly available databases, that high levels of HSPA1A were associated poorer prognosis (p = 0.004), suggesting that YK5 would be beneficial to patients presenting high HSP70 expression. We also evaluated the effect of YK5 on the gene expression of the various HSP70 isoforms. Quantitative PCR revealed the ability of YK5 to downregulate HSPA6 and HSC70 (HSPA8) in both cell lines and primary samples. Strikingly, all HSP70 isoforms exhibited similar fold changes upon heat shock in primary samples, CD34+ cord blood cells, and leukemia cell lines, indicating that the cellular stress response is not damaged in AML. However, the specificity of HSP70 inhibition to leukemia cells and not normal cells suggests a dysregulated set of client proteins and increased dependency on HSP70 to maintain leukemic homeostasis. In summary, we have found dysregulated expression of the HSP70 isoforms HSPA1A and HSPA6 in leukemia cells and that the expression levels of these isoforms correlate to the sensitivity of YK5-mediated HSP70 inhibition (HSPA1A: p=0.0012 and r2=0.801, HSPA6: p=0.0011 and r2=0.847). *KKS and JFR contributed equally to this project Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3571-3571
Author(s):  
Matthew F. Clarkson ◽  
Aru Narendran ◽  
Randal N. Johnston

Abstract Abstract 3571 Purpose: Leukemia is the most common malignancy in children. Improved treatment strategies in recent decades have yielded substantially enhanced outcomes for children with leukemia, reaching survival rates >80%. However, there remain significant issues with current treatment. Certain subgroups of patients who are resistant to or relapse from current treatments have a dismal prognosis. Furthermore, there are significant late effects of intensive treatments, including secondary cancers, neurocognitive defects, cardiotoxicity, obesity and infertility. For these reasons, novel treatment strategies are urgently needed for high-risk leukemia in children. Reovirus type 3 Dearing is a wild-type double-stranded RNA virus that has shown great promise as a selective oncolytic agent by its ability to replicate in transformed cells but not in normal cells. Although a number of early phase clinical studies have been completed in patients with advanced, refractory solid tumors in adults, systematic evaluation of this agent in the treatment of refractory pediatric leukemia has not been reported. As an initial step towards developing an oncolytics based treatment approach, we report preclinical data with respect to the activity, target validation, target modulation and drug combinability of reovirus in childhood leukemia cells. Experimental Design: A panel of pediatric leukemia cell lines representing high-risk molecular features such as Bcr-Abl, MLL rearranged and mixed lineage was used (n =6). Expression of JAM-A, the cell surface receptor for reovirus, was assessed by flow cytometry. The Ras Activation Assay Kit (EMD Millipore) was used to assess activity of the RAS protein. Western Blots were used to assess the activation (phosphorylation) of the signaling partners downstream of RAS. Cells treated with reovirus, chemotherapy drugs, or both for distinct treatment schedules were assessed for cell viability by the CellTiter-Glo© Luminescent Cell Viability Assay (Promega), and cell death by apoptosis was confirmed by cleavage of PARP. Productive viral infection was assessed by measuring reoviral protein synthesis by Western Blots, and reoviral replication was assessed by virus plaque titration assay. Drug synergies were calculated according to the method of Chou and Talalay. Results: Target validation assays showed the expression of JAM-A, which facilitates effective viral entry into malignant cells, in five of six cell lines. These cell lines also demonstrated differential activation of RAS and downstream kinases, suggesting targeted susceptibility of these cells to reovirus oncolysis. To further test this, we infected cells with reovirus for 1–4 days and assessed cytopathic effects. Using phase contrast microscopy, we observed the virus treated cell lines to demonstrate morphological changes characteristic of cell death following infection. Cell viability assays were used to quantify this effect, and the mechanism of cell death was determined to be apoptotic as evidenced by caspase-dependent cleavage of PARP. Reovirus-induced cell death was correlated with viral protein production and replication. Next, we screened for the ability of reovirus to induce synergistic activity in a panel of conventional and novel targeted therapeutic agents. Our studies showed that, in contrast to the current antileukemic agents, the Bcl-2 inhibitor BH3 mimetic ABT-737 was able to significantly synergize with reovirus in all cell lines tested. Conclusions: In our in vitro studies, oncolytic reovirus as a single agent showed potent oncolytic activity against all pediatric leukemia cell lines tested that express the receptor for reovirus, regardless of the status of the RAS signaling pathway. Further, we found reovirus-induced oncolysis can be enhanced by combination with Bcl-2 inhibition but was unaltered or antagonized by the other drugs indicating a key relationship between the two pathways. As such, our data for the first time, show that pediatric leukemia cells carry the potential to be targeted by reovirus induced oncolysis and the identification of drug synergy and the biomarkers of target modulation provide the basis for further studies to develop this novel therapeutic approach for clinical studies in the near future. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document