Evasion of Necroptosis and Inflammasome Activation Promotes Myeloid Leukemogenesis

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2856-2856
Author(s):  
Ulrike Höckendorf ◽  
Yabal Monica ◽  
Christian Peschel ◽  
Philipp J. Jost

Abstract Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic neoplasms driven partly by the loss of differentiation and theblockade of cell death. AML is sustained by leukemia-initiating cells (LICs) that arise from pre-leukemic hematopoietic stem and progenitor cells (HSPCs) that carry genetic alterations being selected for during leukemogenesis. The resistance of LICs to standard chemotherapies presents a major clinical challenge as they eventually cause disease relapse and death. Understanding the mechanisms of LIC resistance to undergoing cell death is therefore critical for a curative therapy of AML. While the regulatory factors that maintain HSPC proliferation and differentiation under normal conditions are well understood, significantly less is known about how LIC fate is regulated. As many hematopoietic disorders are characterized by the overproduction of pro-inflammatory cytokines, we hypothesized that necroptosis controlled cytokine secretion and inflammatory cell death might influence AML development. We therefore addressed the role of MLKL and XIAP in AML and tested whether deletion of Mlkl or Xiap would affect disease progression. Here we show that MLKL limits oncogene-mediated leukemogenesis by promoting the inflammatory cell death of common myeloid progenitors (CMPs) and short-term hematopoietic stem cells (HSCs) in experimental mice. Upon oncogenic stress MLKL-dependent necroptosis and subsequent inflammasome activation were triggered, promoting the production of IL-1β, a potent stimulator of HSPC differentiation and maturation, thus, suppressing the emergence of LICs and limiting leukemogenesis. In a murine bone marrow transplantation model of AML the absence of MLKL accelerated AML development significantly. The enhanced disease was due to the expansion of common myeloid progenitors (CMPs) and short-term hematopoietic stem cells (ST-HSCs), being the cellular compartments to contain LICs. The survival advantage of Mlkl-/- HSPCs became apparent in colony-forming assays and liquid cultures specifically within the CMP and ST-HSC compartments. Sorted ST-HSCs from Mlkl-/- produced more GEMM colonies than WT, the colony type harboring the multipotential myeloid progenitor cells, and both ST-HSCs and CMPs retained significantly more lineage-negative cells in liquid culture. In addition, Mlkl-/- colonies showed a reduction in propidium iodide (PI)-positive dead cells compared with WT colonies. Importantly, WT cells showed caspase activation and produced substantial amounts of the inflammatory cytokine IL-1β which was severely blunted by Mlkl deficiency. We also observed reduced expression of MLKL in leukemic cells on both mRNA and protein level, implying that suppression of cell death was beneficial for the survival of LICs. In contrast, deletion of Xiap did not alter survival or differentiation of leukemic cells when compared with WT cells. Furthermore, XIAP was not differentially expressed on mRNA or protein level compared with WT, indicating that XIAP does not play a critical role in leukemogenesis. In agreement with the murine data, gene expression analysis from primary leukemia cells from two large patient cohorts newly diagnosed with AML showed significantly lower expression of MLKL, but not XIAP, in a variety of AML subtypes compared to healthy controls. Overall, our data demonstrate a key role for MLKL-mediated cell death and activation of the inflammasome in AML and represents a novel tumor-suppressive mechanism. Disclosures Peschel: MophoSys: Honoraria.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 715-715
Author(s):  
Steffen Koschmieder ◽  
Berthold Goettgens ◽  
Pu Zhang ◽  
Tajhal Dayaram ◽  
Kristin Geary ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant disorder originating from the transformation of hematopoietic stem cells (HSC) by the BCR-ABL oncogene. Using the tet-off system, we have generated double-transgenic mice in which BCR-ABL is expressed under the control of the murine SCL 3′ enhancer, which targets expression to the vast majority of HSC and progenitors. After induction of BCR-ABL, all mice developed progressive chronic neutrophilia and leukocytosis (20–40 K/ul), and the animals died or were sacrificed in moribund condition within 58+/−28 days. Upon necropsy, bone marrow granulocytic hyperplasia, splenomegaly as well as organ infiltration by leukemic cells (liver, kidney, lung, small intestine, skin) were found. In addition, 31% of the mice subsequently developed ALL or lymphomas. BCR-ABL mRNA and protein expression were demonstrated in the affected organs. Expression of the transactivating transgene tTA was high in HSC, CMP, and CLP, but low in GMP and MEP, as assessed by real-time PCR, suggesting that the SCL 3′ enhancer indeed directed BCR-ABL expression to the most primitive hematopoietic cells within the bone marrow. The percentage of HSC in the bone marrow was expanded 7- and 26-fold in double-transgenic as compared to single-transgenic or wild-type control mice within 12 and 21 days, respectively, after BCR-ABL induction. GMP were increased 2- and 3-fold while the number of CMP was decreased 2-fold after 12 days but was increased 1.5-fold after 21 days. MEP were decreased 3-fold at both time points. In keeping with these results, the percentage of Ter-119 positive erythroid cells was decreased while the percentage of Gr-1 positive granulocytic cells was increased in the bone marrow. To assess reversibility of the phenotype, we readministered tetracycline to abrogate BCR-ABL expression. Double-transgenic mice showed rapid clinical improvement, reversion of neutrophilia and leukocytosis, normalization of Gr-1/Mac-1 positive cells in the peripheral blood and spleen, and reversion of splenomegaly. In addition, in mice that had developed lymphoblastic disease, readministration of tetracycline led to disappearance of lymphomas and of B220/BP-1 positive lymphoblastic cells in the peripheral blood. Furthermore, expansion of the HSC compartment in the bone marrow was also reversible, and the percentage of HSC decreased to levels observed in control mice. Repeated induction of BCR-ABL expression by removal of tetracycline led to reappearance of the myeloid and lymphoid phenotype. Again, the disease was reversible, and none of the animals relapsed while on tetracycline, suggesting that the phenotype remained completely dependent on the expression of the oncogene. In conclusion, we present a model of BCR-ABL mediated CML-like disease with expansion of phenotypic hematopoietic stem cells and myeloid progenitor cells in the bone marrow. The target cell population in this model closely resembles the origin of transformation in patients with CML, allowing for in vivo monitoring of early molecular mechanisms of BCR-ABL transformation. We are currently studying the function of the expanded HSC and progenitor cells in transplantation experiments.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1186-1186
Author(s):  
Jing Zhang ◽  
Hubert Serve ◽  
Christian H. Brandts

Abstract The receptor tyrosine kinases FLT3 and KIT are highly expressed on the surface of leukemic blasts in most patients with acute myeloid leukemia. Although about one third of patients display activating mutations in FLT3 (and more rarely in KIT), the majority of patients have no mutations in FLT3 or KIT. Previously, we demonstrated that Cbl functions as the E3 ligase for both FLT3 and KIT, and that ligase-inactivating mutations of Cbl stabilize FLT3 and KIT on the cell surface by preventing endocytosis and degradation (Sargin et al, Blood 2007). Furthermore, we demonstrated that expression of E3-ligase deficient Cbl mutants led to the development of a myeloproliferative disease in a murine bone marrow transplantation model (Bandi et al, Blood 2009). However, Cbl mutations are rarely found in AML. Here, we investigated the role of the Cbl regulators suppressors of T-cell signaling 1 and 2(STS1 and STS2) in stabilizing wild-type FLT3 and KIT on the cell surface of hematopoietic stem and progenitor cells (HSPCs). STS1 is ubiquitously expressed, while STS2 expression is restricted to the hematopoietic tissue. STS1 and STS2 constitutively bind to Cbl, while their binding to FLT3 and KIT is dependent on ligand-activation by FL and SCF, respectively. Interestingly, STS1 (but not STS2) functions as a tyrosine phosphatase for both ligand-activated FLT3 and KIT. This required the PGM domain of STS1, as PGM point mutant of STS1 did not dephosphorylate FLT3 or KIT. In line with this, knockdown of STS1 using stably expressing shRNA constructs showed a significant hyperphosphorylation of FLT3 and KIT. By using STS1/STS2 single and double knockout mice, we analyzed the effects of STS1 and STS2 on hematopoietic stem and progenitor cells in vivo. We found that deficiency of STS1 causes an increase of both absolute number and frequency of LSK (lineage marker-, KIT+, Sca1+) cells, which contain HSPCs. This phenotype was even more pronounced in STS1 and STS2 double knockout (dKO) mice, and is mainly attributable to the short term hematopoietic stem cell (ST-HSC) and multipotent progenitor (MPP) cell population, as defined by both standard and SLAM markers. Colony assays using primary bone marrow cells revealed a significantly higher colony forming ability in STS1-KO and dKO cells compared to wild type (wt) cells, particularly after serial replating. A careful analysis of the cells derived from methylcellulose culture revealed an increased proportion of immature (Mac1- CD48+ CD16/32-) cells in STS1-KO and dKO cells. Competitive repopulation assays showed an advantage for dKO cells when compared to wt, suggesting that the LT-HSC compartment is also affected. Even more pronounced were the differences in CFU-S assays (colony forming units spleen), displaying significantly more colonies of dKO compared to wt donor cells, functionally demonstrating a significantly increased ST-HSC / MPP population in dKO donors. A detailed analysis of the downstream signaling events demonstrated that loss of STS1 specifically causes an activated PI3-Kinase / AKT pathway. In summary, our data demonstrates that STS1 functions as a phosphatase of FLT3 and KIT and, using genetic mouse models, indicates a critical role in the maintenance and proliferation of long-term and short-term hematopoietic stem cells. This may also affect sensitivity to kinase inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4340-4340
Author(s):  
Mayte Medrano ◽  
Miriam Guadalupe Contreras-Mostazo ◽  
Teresa Caballero ◽  
Jose Antonio Bejarano-García ◽  
Iván V. Rosado ◽  
...  

Abstract BACKGROUND: We have previously described the antitumor effect of the cannabinoid WIN-55,212-2 (WIN-55) and a set of cannabinoid derivatives (CNB) specific for CB2 in multiple myeloma (Barbado et al, 2018). In AML, we also observed a potent and selective antileukemic effect, affecting signaling and metabolic pathways essential for the viability of tumor cells. Among them, we found an increased stress on the endoplasmic reticulum, mitochondrial damage, and alteration of the metabolism of ceramides, although none of these events turned out to be the main trigger of cell death, since the inhibition of each of them did not prevent the antileukemic effect of CNB. On the other hand, disruption of the mecanisms of DNA repair have been identified as a key oncogeneic event in different solid tumors, and some studies have also suggested that it might be involved in leukemogenesis. More specifically, PARP1 is involved in DNA damage repair. Other functions include the regulation of glycolysis enzymes through the addition of Poly ADP-Ribose (PAR) and the execution of Parthanatos, that occurs whenever PARP-1 becomes over-activated in response to extreme damage inducing nuclear translocation of AIF and depletion of NAD +. OBJECTIVES: In this study we set out to identify the ultimate mechanism that justifies the aforementioned pleiotropic effect of CNB on the metabolism of leukemic cells and their viability. METHODS: Cell viability was determined by MTT and flow cytometry. The mRNA and / or protein expression profile of AML samples or healthy progenitor cells were studied by qPCR and / or Western blot. Glycolytic flux was studied with the XF Glycolytic Rate Assay (Seahorse Biosciences). NAD + levels and glycolytic enzyme activity were measured using quantification kits. Parylation of different enzymes were confirmed by Co-IP using the corresponding antibodies. Finally, NOD/scid/IL-2R gammae null (NSG) mice were xenotransplanted with HL60-Luciferase cell line. Once the presence of leukemic cells was confirmed, treatment with vehicle, WIN-55 cannabinoid at a dose of 5 mg/kg/day or citarabine (ARA-C) at 50 mg/kg during 5 days was administered. Also we tested the effect of these compounds on normal hematopoiesis by treating healthy BALB-C mice. RESULTS: Pretreatment of leukemic cells with Olaparib, a PARP1 inhibitor, reversed WIN-55 induced apoptosis by almost 100%. WIN-55 affected the activity of most glycolysis enzymes, with a marked drop of the activity of GAPDH and pyruvate kinase which was reversed by Olaparib pretreatment. Also G6PDH activity was markedly affected upon culture with WIN-55. Co-IP confirmed parylation of these enzymes which was reversed with Olaparib. ECAR data detected by Seahorse also confirmed the drop in glycolytic capacity produced by WIN-55 in leukemic cells which again was reversed upon culture with Olaparib. In addition, the addition of nicotinamide mononucleotide (NAM), a precursor of NAD +, reversed the loss of viability produced by WIN-55. Next, we confirmed that PARP1 levels were significantly higher in leukemic cell lines and in a series of 40 AML patients as compared to healthy hematopoietic stem cells (HSC). Finally, we observed a translocation of AIF to the nucleus, confirming that WIN-55 produces PARTHANATOS. In a murine model we confirmed treatment with WIN-55,212-2 significantly prolonged survival in AML xenograft mice, with disappearance of the leukemic clone in a significant proportion of cases. By contrast, cannabinoids did not affect the viability of hematopoietic stem cells (HSC) in vivo, resulting in a lack of myeloid toxicity in healthy treated mice. CONCLUSIONS: WIN-55 exerts a selective antileukemic effect through the overactivation of PARP1, affecting the levels of parylation in enzymes involved in glycolysis and pentose phosphate pathways, leading to the translocation of AIF to the nucleus and to depletion of NAD +, which were reversed through PARP1 inhibition. These effects are not observed in normal HSC. These data are confirmed in murine models in which we confirmed the antileukemic effect of WIN-55 withouth hampering normal hematopoiesis. Figure 1 Figure 1. Disclosures Pérez-Simón: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


1987 ◽  
Vol 5 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Vincent S. Gallicchio ◽  
Thomas D. Watts ◽  
George P. Casale ◽  
Philip M. Bartholomew

Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


2005 ◽  
Vol 67 (1) ◽  
Author(s):  
Hideo Ema ◽  
Yohei Morita ◽  
Hiromitsu Nakauchi ◽  
Yumi Matsuzaki

2018 ◽  
Vol 19 (7) ◽  
pp. 2122 ◽  
Author(s):  
Geoffrey Brown ◽  
Rhodri Ceredig ◽  
Panagiotis Tsapogas

Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.


Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3783-3792 ◽  
Author(s):  
Xiaoxia Hu ◽  
Hongmei Shen ◽  
Chen Tian ◽  
Hui Yu ◽  
Guoguang Zheng ◽  
...  

Abstract The predominant outgrowth of malignant cells over their normal counterparts in a given tissue is a shared feature for all types of cancer. However, the impact of a cancer environment on normal tissue stem and progenitor cells has not been thoroughly investigated. We began to address this important issue by studying the kinetics and functions of hematopoietic stem and progenitor cells in mice with Notch1-induced leukemia. Although hematopoiesis was progressively suppressed during leukemia development, the leukemic environment imposed distinct effects on hematopoietic stem and progenitor cells, thereby resulting in different outcomes. The normal hematopoietic stem cells in leukemic mice were kept in a more quiescent state but remained highly functional on transplantation to nonleukemic recipients. In contrast, the normal hematopoietic progenitor cells in leukemic mice demonstrated accelerated proliferation and exhaustion. Subsequent analyses on multiple cell-cycle parameters and known regulators (such as p21, p27, and p18) further support this paradigm. Therefore, our current study provides definitive evidence and plausible underlying mechanisms for hematopoietic disruption but reversible inhibition of normal hematopoietic stem cells in a leukemic environment. It may also have important implications for cancer prevention and treatment in general.


Sign in / Sign up

Export Citation Format

Share Document