Prognostic Impact of Minimal Residual Disease By ASO-RQ-PCR in Multiple Myeloma: A Pooled Analysis of 2 Phase III Studies in Patients Treated with Lenalidomide after Front-Line Therapy

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4409-4409 ◽  
Author(s):  
Stefania Oliva ◽  
Manuela Gambella ◽  
Alessandra Larocca ◽  
Stefano Spada ◽  
Eleonora Marzanati ◽  
...  

Abstract Background: The prognostic utility of minimal residual disease (MRD) analysis in multiple myeloma (MM) patients has been well described in the last few years. The role of prolonged maintenance therapy even in persistent MRD negative patients is still unclear. The aim of this study is to evaluate the role of MRD by allelic-specific oligonucleotide real-time quantitative polymerase chain reaction (ASO-RQ-PCR) as predictor of progression-free survival (PFS) in newly diagnosed MM (NDMM) patients receiving Lenalidomide maintenance after frontline treatment. Patients and Methods: NDMM patients enrolled in the RV-MM-EMN-441 (NCT01091831) and the RV-MM-COOP-0556 (EMN02/HO95 MM) phase III trials achieving ≥ very good partial response (VGPR) after consolidation/intensification were included in the pooled MRD molecular analysis. After induction therapy, patients in the RV-MM-EMN-441 study were randomized to Cyclophosphamide-Lenalidomide-Dexamethasone (CRD) or Autologous Stem Cell Transplantation (ASCT); patients in the RV-MM-COOP-0556 were randomized to Bortezomib-Melphalan-Prednisone (VMP) vs ASCT (Gay F et al Lancet Oncol 2016, Cavo M et al J Clin Oncol 34, 2016 abstr 8000). All patients received Lenalidomide maintenance until progression or intolerance. MRD analysis was performed on bone marrow (BM) aspirates after intensification/consolidation, after 6 courses of maintenance and then every 6 months until clinical relapse. Patient-specific IgH rearrangements were amplified and directly sequenced from genomic DNA at diagnosis. IgH-based MRD detection by ASO-RQ-PCR was performed using an AbiPrism7900HT.MRD analysis was interpreted following the Euro-MRD guidelines(van der Velden VH et al. Leukemia 2007). Molecular-CR (m-CR) was defined as two consecutive negative MRD results by ASO-RQ-PCR with minimal sensitivity of 10−5. PFS was analyzed using the Kaplan-Meier method, curves were compared with the log-rank test. Multivariate Cox model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: a total of 105 patients entered the molecular MRD pooled study: a specific IgH molecular marker was identified in 73 patients (70%), 32 (30%) did not obtain a successful sequencing. Median age was 57 years (37-65); 30 (41%) patients had International Staging System (ISS) stage I, 33 (45%) stage II and 10 (14%) stage III. FISH risk profile was standard in 43 (59%) patients, high in 24 (33%) and not available in 6 (8%). Thirty-eight (52%) patients did not receive ASCT consolidation and 35 (48%) underwent ASCT. After consolidation/intensification 33/73 (45%) patients achieved m-CR: 19/35 (54%) ASCT patients and 14/38 (37%) no ASCT patients. The impact of m-CR on outcome after consolidation was explored: after a median follow-up of 44 months, median PFS was 48.8 months versus not reached in no m-CR vs m-CR patients, respectively (p=0.01). Lenalidomide maintenance further improved depth of MRD response: 11/40 (27%) MRD positive patients after consolidation obtained a m-CR during maintenance and a median of 2 natural logarithms of tumor burden reduction was recorded. In multivariable Cox analysis the risk of progression/death was higher for ISS stage II/III versus I (HR, 2.91, CI: 1.01-8.41, p=0.048), high-risk FISH versus standard-risk (HR, 2.23 CI: 0.81-6.10, p=0.12), age > 60 years versus ≤60 years (HR: 3.55, CI: 1.26-10.04, p=0.017) and patients who did not achieve m-CR during treatment versus patients who did (HR, 7.65 CI: 2.77-21.11, p<0.001). We identified a very high risk group defined by high risk FISH at diagnosis and persistent MRD positivity, with a median PFS of 29.4 months (figure1). Conclusions: MRD status by ASO-RQ-PCR is a predictor of outcome significantly superior to standard risk factors in NDMM patients and the achievement of m-CR seems to overcome the high risk FISH status in PFS analysis. Molecular CR rate and reduction of tumor burden obtained after consolidation can be enhanced with Lenalidomide maintenance. Based on these preliminary results, the assessment and monitoring of MRD should be suggested as a better prognostic indicator than CR, and the potential role of a MRD-guided therapy should be investigated in future prospective trials. Figure 1 PFS of patients stratified by MRD status (molecular-CR vs no molecular-CR) and FISH (high risk vs standard risk) Figure 1. PFS of patients stratified by MRD status (molecular-CR vs no molecular-CR) and FISH (high risk vs standard risk) Disclosures Oliva: Celgene: Honoraria; Takeda: Honoraria; Amgen: Honoraria. Larocca:Amgen, Celgene, BMS, Janssen-Cilag: Honoraria. Offidani:Janssen: Honoraria; Celgene: Honoraria, Research Funding. Palumbo:Janssen Cilag: Honoraria; Takeda: Employment, Honoraria. Boccadoro:Sanofi, Celgene, Amgen, Janssen, Novartis, Abbivie, BMS: Honoraria; Celgene, Janssen, Amgen, BMS, Mundipharma, Novartis, Sanofi: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5751-5751
Author(s):  
Andrey Garifullin ◽  
Sergei Voloshin ◽  
Alexey Kuvshinov ◽  
Anastasiya Kuzyaeva ◽  
Alexander Sсhmidt ◽  
...  

Abstract Introduction. Most patients with multiple myeloma (MM) are considered to be incurable, and relapse owing to minimal residual disease (MRD) is the main cause of death among these patients, the optimal methodology to assess MRD is not clear. The results of previous studies demonstrated the potential of multiparameter flow cytometry (MFC) and (PET-CT) in evaluation of MRD in MM. MRD monitoring should be applied in prospective clinical trials to compare and evaluate the efficacy of different treatment strategies, particularly in the consolidation and maintenance settings. The impact of MRD negativity is important, but further studies are needed to quantify the pharmacoeconomic and quality-of-life differences between early and delayed transplant strategies. Therefore, with the currently available evidence, upfront autologous stem cell transplantation (ASCT) is standard of care regardless of MRD status. Aim. We are aiming to determine the role of MRD and role of autologous stem cells transplantation in MM. Materials and methods. We`ve recently started a prospective one-center pilot study in subjects with MM. We analyzed 18 transplant-eligible patients with MM (the median age is 57 years, a male/female ratio is 3.5:1).The induction therapy Bortezomib-based only regimens was used in 12/18 (67%) patients, combination of Bortezomib-Immunomodulator-based regimens - in 6/18 (33%). High dose therapy (Mel200) and ASCT is carried out on 100% patients. The standard risk was established on 15 patients, 1 patient has an intermediate risk and 2 patients have high risk according to mSMART 2.0 stratification. The MFC MRD status of bone marrow was evaluated after 4-6 cycles of induction therapy and after ASCT on 5-color flow cytometry with use anti- CD38, CD138, CD45, CD19, CD20, CD27, CD56 and CD117 antibodies. We were based on two levels: MFC MRD- (<10-4) and MFC MRD- (<10-5) for assessing the significance of factors that affect MRD and for identifying the prognostic potential of MRD-negative status. The evaluation of MRD was carried out by genetic (cytogenetic and FISH) analysis of bone marrow plasma cells and PET-CT with 18-FDG before ASCT and on 100 day post ASCT. The results. The MFC MRD- (<10-4) before carrying out an ASCT reached 22.2% (4/18), the MFC MRD- (<10-5) - 0% and was not depended on the variant of pre-transplantation regimen. After the ASCT had been carried out there was a tendency to decrease the tumor burden in bone marrow from 0.65% to 0.1% and to increase the frequency of MFC MRD- (<10-4) status to 44.4% (8/18), of which MFC MRD- (<10-5) was 16.7% (3/18). MRD status was determined before ASCT and after ASCT by MFC and FISH in patients with high risk. The use of maintenance therapy with bortezomib (n = 5) or lenalidomide (n = 13) did not increase the frequency of MRD status. The PFS median in MFC MRD+ (>10-4) group was 23 months, in the MFC MRD- (<10-4) was not achieved; 2-year PFS was 43% and 100%, respectively (p=.04) We compared PFC between MFC MRD+ (>10-4) before ASCT (n = 4) and MFC MRD- (<10-4) after ASCT (n = 6) to assess the effect of ASCT in MM. The median PFS was not reached in both groups; 2-year PFS was 67% and 100%, respectively. The reliable difference between PFS in MFC MRD- (10-4-10-5) group and MFC MRD- (<10-5) was absent: the median of PFS was not achieved in both groups. PET-CT has been tested on 15 patients, PET-CT- response was achieved in 53% (8/15) patients. The PFS median in PET-CT+ group and PET-CT- group was not achieved. The 2-year PFS was higher in PET-CT+ group then PET-CT- probably due to patients with MFC MRD-. The 2-year PFS in «MFC MRD-PET-CT-» group was 100% to 55% in other patients. Conclusion. Carrying out ASCT demonstrated a tendency to increase the percentage of MFC MRD negative responses and improvement of PFS. The use of MFC in evaluation of MRD should be complemented with PET-CT and genetic methods for further analysis of the MFC MRD role status on MM patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-22
Author(s):  
Amrita Krishnan ◽  
Antje Hoering ◽  
Parameswaran Hari ◽  
Rachael Sexton ◽  
Robert Z. Orlowski

Background:Lenalidomide(Len) maintenance following autologous transplantation(ASCT) for multiple myeloma has improved progression free survival (PFS)and overall survival compared with placebo. Optimal duration of maintenance is unknown with considerable inter-trial variability. Depth of remission correlates with PFS, with patients (pts) in a minimal residual disease negative state (MRD) to a sensitivity of 10 -5 having a better PFS. Therefore, Len combinations that lead to higher MRD negativity rates are under study. The anti CD38 antibody Daratumumab in combination with lenalidomide in newly diagnosed MM pts showed a higher MRD negativity rates in the MAIA trial (NEJM2019). SWOGS1803 is testing this regimen as maintenance following ASCT while also assessing the optimal duration of maintenance in patients who achieve MRD negativity. Methods:Pts 18-75 years, with MM within 12 months of induction and without progression from diagnosis are eligible. Prior daratumumab therapy is allowed. Enrollment may be before or after ASCT with transplant being within 18 months from initial registration. Within 180 days from ASCT pts will undergo first randomization to Len or Len plus subcutaneous daratumumab/rHuPH20 maintenance (Len Dara). MRD will be assessed prior to start of maintenance and then annually. Randomized treatment will continue for two years at which time repeat MRD will be assessed for pts in VGPR or better. Pts who are MRD negative will undergo second randomization to either continue maintenance on their assigned arm or discontinue maintenance. The continued maintenance arm will stay on therapy for 7 years or until disease progression or unacceptable toxicity.(see schema) The primary objective of the trial is to compare OS between the two treatment arms (Len vs. LenDara). Secondary objectives include comparisons of overall response rate, PFS, and MRD negativity rate between the treatment arms. The objectives of the second randomization are to compare OS of MRD negative pts who continue maintenance on each arm vs. those who discontinue. An early read out of the trial will be the 24 month MRD analysis after all pts have been accrued. A total of 1100 pts will be accrued to initial step 1 to allow for a 5% drop out and allow 950 pts for the second randomization. As of Aug 1, 171 pts are enrolled for screening among whom 133 have been randomized. Figure 1 Disclosures Krishnan: BMS/Celgene: Consultancy, Other: Stock BMS, Speakers Bureau; Takeda: Speakers Bureau; Amgen: Speakers Bureau; Sanofi: Consultancy; Sutro: Membership on an entity's Board of Directors or advisory committees; Z Predicta: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Regeneron: Consultancy. Hari:Incyte Corporation: Consultancy; Takeda: Consultancy; BMS: Consultancy; Amgen: Consultancy; GSK: Consultancy; Janssen: Consultancy. Orlowski:STATinMED Research: Consultancy; Laboratory research funding from BioTheryX, and clinical research funding from CARsgen Therapeutics, Celgene, Exelixis, Janssen Biotech, Sanofi-Aventis, Takeda Pharmaceuticals North America, Inc.: Research Funding; Sanofi-Aventis, Servier, Takeda Pharmaceuticals North America, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Founder of Asylia Therapeutics, Inc., with associated patents and an equity interest, though this technology does not bear on the current submission.: Current equity holder in private company, Patents & Royalties; Amgen, Inc., AstraZeneca, BMS, Celgene, EcoR1 Capital LLC, Forma Therapeutics, Genzyme, GSK Biologicals, Ionis Pharmaceuticals, Inc., Janssen Biotech, Juno Therapeutics, Kite Pharma, Legend Biotech USA, Molecular Partners, Regeneron Pharmaceuticals, Inc.,: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8001-8001
Author(s):  
Martin F. Kaiser ◽  
Andrew Hall ◽  
Katrina Walker ◽  
Ruth De Tute ◽  
Sadie Roberts ◽  
...  

8001 Background: Patients with ultra high-risk (UHiR) newly diagnosed multiple myeloma (NDMM) and patients with plasma cell leukemia (PCL) continue to have dismal outcomes and are underrepresented in clinical trials. Recently, improved responses with anti-CD38 monoclonal antibody combination therapy have been reported for NDMM patients. We report here outcomes for NDMM UHiR and PCL patients treated in the OPTIMUM/MUKnine (NCT03188172) trial with daratumumab, cyclophosphamide, bortezomib, lenalidomide, dexamethasone (Dara-CVRd) induction, augmented high-dose melphalan (HDMEL) and ASCT. With final analysis follow-up surpassed in Feb 2021, we report here early protocol defined endpoints from induction to day 100 post ASCT. Methods: Between Sep 2017 and Jul 2019, 107 patients with UHiR NDMM by central trial genetic (≥2 high risk lesions: t(4;14), t(14;16), t(14;20), gain(1q), del(1p), del(17p)) or gene expression SKY92 (SkylineDx) profiling, or with PCL (circulating plasmablasts > 20%) were included in OPTIMUM across 39 UK hospitals. Patients received up to 6 cycles of Dara-CVRd induction, HDMEL and ASCT augmented with bortezomib, followed by Dara-VR(d) consolidation for 18 cycles and Dara-R maintenance. Primary trial endpoints are minimal residual disease (MRD) status post ASCT and progression-free survival. Secondary endpoints include response, safety and quality of life. Data is complete but subject to further data cleaning prior to conference. Results: Median follow-up for the 107 patients in the safety population was 22.2 months (95% CI: 20.6 – 23.9). Two patients died during induction due to infection. Bone marrow aspirates suitable for MRD assessment by flow cytometry (10-5 sensitivity) were available for 81% of patients at end of induction and 78% at D100 post ASCT. Responses in the intention to treat population at end of induction were 94% ORR with 22% CR, 58% VGPR, 15% PR, 1% PD, 5% timepoint not reached (TNR; withdrew, became ineligible or died) and at D100 post ASCT 83% ORR with 47% CR, 32% VGPR, 5% PR, 7% PD, 10% TNR. MRD status was 41% MRDneg, 40% MRDpos and 19% not evaluable post induction and 64% MRDneg, 14% MRDpos and 22% not evaluable at D100 post ASCT. Responses at D100 post ASCT were lower in PCL with 22% CR, 22% VGPR, 22% PR, 22% PD, 12% TNR. Most frequent grade 3/4 AEs during induction were neutropenia (21%), thrombocytopenia (12%) and infection (12%). Grade 3 neuropathy rate was 3.7%. Conclusions: This is to our knowledge the first report on a trial for UHiR NDMM and PCL investigating Dara-CVRd induction and augmented ASCT. Response rates were high in this difficult-to-treat patient population, with toxicity comparable to other induction regimens. However, some early progressions highlight the need for innovative approaches to UHiR NDMM. Clinical trial information: NCT03188172.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
David Böckle ◽  
Paula Tabares Gaviria ◽  
Xiang Zhou ◽  
Janin Messerschmidt ◽  
Lukas Scheller ◽  
...  

Background: Minimal residual disease (MRD) diagnostics in multiple myeloma (MM) are gaining increasing importance to determine response depth beyond complete remission (CR) since novel agents have shown to induce high rates of deep clinical responses. Moreover, recent reports indicated combining functional imaging with next generation flow cytometry (NGF) could be beneficial in predicting clinical outcome. This applies in particular to the subset of patients suffering from relapsed/refractory multiple myeloma (RRMM) who tend to show a higher incidence of residual focal lesions despite serological response. Here, we report our institutions experience with implementing both functional imaging and NGF-guided MRD diagnostics in clinical practice. Methods: Our study included patients with newly diagnosed multiple myeloma (NDMM) and RRMM achieving VGPR, CR or sCR. Bone marrow aspirates were obtained for MRD-testing according to IMWG 2016 criteria. Samples were collected between July 2019 and July 2020 and analyzed with NGF (according to EuroFlowTM guidelines) at a sensitivity level of 10-5. Results were compared to functional imaging obtained with positron emission tomography (PET) and diffusion-weighted magnetic resonance imaging (DW-MRI). High-risk disease was defined as presence of deletion 17p, translocation (14;16) or (4;14). Results: We included 66 patients with NDMM (n=39) and RRMM (n=27) who achieved VGPR or better. In patients with RRMM the median number of treatment lines was 2 (range 2-11). Fifteen patients suffered from high-risk disease. Median age at NGF diagnostics was 64 years (range 31-83). Among patients achieving VGPR (n=27), CR (n=10) and sCR (n=29) seventeen (26%) were MRD-negative by NGF testing. CR or better was significantly associated NGF MRD-negativity (p=0.04). Notably, rates of NGF MRD-negativity were similar among patients with NDMM (28%) and RRMM (26%). Even some heavily pretreated patients who underwent ≥ 4 lines of therapy achieved MRD-negativity on NGF (2 of 9). Functional imaging was performed in 46 (70%) patients with DW-MRI (n=22) and PET (n=26). Median time between NGF and imaging assessment was 2 days (range 0-147). Combining results from imaging and NGF, 12 out of 46 (26%) patients were MRD-negative with both methods (neg/neg). Three patients displayed disease activity as measured with both, imaging and NGF (pos/pos). Twenty-nine of the remaining patients were MRD-positive only according to NGF (pos/neg), while two patients were positive on imaging only (neg/pos). More patients demonstrated combined MRD-negativity on NGF and imaging (neg/neg) in the NDMM setting than in RRMM (32% versus 19%). We also observed that 30% of the patients with high-risk genetics showed MRD-negativity on both imaging and NGF. Of note, none of the patients with very advanced disease (≥4 previous lines) was MRD-negative on both techniques. Conclusion In the clinical routine, MRD diagnostics could be used to tailor maintenance and consolidation approaches for patients achieving deep responses by traditional IMWG criteria. Our real-world experience highlights that MRD-negativity can be achieved in patients suffering from high-risk disease and also in late treatment lines, supporting its value as endpoint for clinical trials. However, our data also support MRD diagnostics to be combined with functional imaging at least in the RRMM setting to rule out residual focal lesions. Future studies using MRD for clinical decision-making are highly warranted. Disclosures Einsele: Takeda: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; GlaxoSmithKline: Honoraria, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau. Rasche:Celgene/BMS: Honoraria; GlaxoSmithKline: Honoraria; Oncopeptides: Honoraria; Skyline Dx: Research Funding; Janssen: Honoraria; Sanofi: Honoraria.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2321-2321
Author(s):  
Sebastian Giebel ◽  
Beata Stella-Holowiecka ◽  
Malgorzata Krawczyk-Kulis ◽  
Nicola Goekbuget ◽  
Dieter Hoelzer ◽  
...  

Abstract Abstract 2321 Poster Board II-298 The role of autologous hematopoietic stem cell transplantation (autoHSCT) in the treatment of adult acute lymphoblastic leukemia (ALL) is a subject of controversies as several prospective studies failed to prove its advantage over maintenance chemotherapy. Those studies, however, did not take into account the status of minimal residual disease (MRD), which is now recognized a potent predictor for relapse among patients treated with conventional-dose chemotherapy. The goal of this analysis was to determine the impact of MRD on outcome of autoHSCT. Data on 123 autoHSCT recipients collected from 6 study groups cooperating in the European Leukemia Net were analyzed. Median age of 77 B-lineage and 46 T-lineage high-risk ALL patients was 31 (16-59) years. Ph+ ALL was recognized in 20 cases. All patients were in first complete remission (CR) lasting 6 (1.5-22) months. Peripheral blood was used as a source of stem cells in 67 patients whereas bone marrow, in 56 cases. Conditioning was based on chemotherapy alone (n=76) or total body irradiation (n=47). MRD was evaluated in bone marrow with the use of either multiparametric flow cytometry (n=79) or molecular techniques (n=44). MRD level of 0.1% bone marrow cells was used as a cut-off point for the purpose of this study. At the time of autoHSCT MRD was &0.1% in 93 patients and ≧0.1% in 30 cases. With the median follow up of 5 years, the probability of leukemia-free survival (LFS) at 5 years for the whole group equaled 48% (+/-5). Three patients died of transplantation-related complications. The LFS rate was significantly higher for patients with the MRD level at transplantation &0.1% compared to those with MRD ≧0.1% (57% vs. 19%, p=0.0002). The difference was particularly pronounced for peripheral blood HSCT (66% vs. 20%, p=0.0006) and for T-lineage ALL (62% vs. 8%, p=0.001). In a multivariate analysis adjusted for other potential prognostic factors (age, CR duration, Ph+ ALL, immunophenotype, source of stem cells, type of conditioning), the MRD status &0.1% remained the only independent factor associated with increased LFS (HR=2.5, p=0.0009). CONCLUSIONS: MRD status is the most important predictor for LFS after autoHSCT in adults with ALL. More than half of patients with high risk disease and low MRD level at the time of transplantation may be cured. This observation may contribute to re-evaluation of the role of autoHSCT in the therapy of adult ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (20) ◽  
pp. 3059-3068 ◽  
Author(s):  
Bruno Paiva ◽  
Jacques J. M. van Dongen ◽  
Alberto Orfao

Abstract Assessment of minimal residual disease (MRD) is becoming standard diagnostic care for potentially curable neoplasms such as acute lymphoblastic leukemia. In multiple myeloma (MM), the majority of patients will inevitably relapse despite achievement of progressively higher complete remission (CR) rates. Novel treatment protocols with inclusion of antibodies and small molecules might well be able to further increase remission rates and potentially also cure rates. Therefore, MRD diagnostics becomes essential to assess treatment effectiveness. This review summarizes reports from the past 2 decades, which demonstrate that persistent MRD by multiparameter flow cytometry, polymerase chain reaction, next-generation sequencing, and positron emission tomography/computed tomography, predicts significantly inferior survival among CR patients. We describe the specific features of currently available techniques for MRD monitoring and outline the arguments favoring new criteria for response assessment that incorporate MRD levels. Extensive data indicate that MRD information can potentially be used as biomarker to evaluate the efficacy of different treatment strategies, help on treatment decisions, and act as surrogate for overall survival. The time has come to address within clinical trials the exact role of baseline risk factors and MRD monitoring for tailored therapy in MM, which implies systematic usage of highly sensitive, cost-effective, readily available, and standardized MRD techniques.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2909-2909
Author(s):  
Guldane Cengiz Seval ◽  
Klara Dalva ◽  
Dilek Oz ◽  
Sule Mine Bakanay ◽  
Ender Soydan ◽  
...  

Abstract Introduction: Post-induction minimal residual disease (MRD) within but not outside (peripheral blood/stem cell graft) of marrow among transplant eligible patients with multiple myeloma (MM) is currently recognized as poor-prognostic. Emerging number of studies are evaluating MRD within the context of cytogenetic risk. In this study we aimed to quantify circulating plasma cells (PCs) by flow in apheresis products (graft=gMRD) and compare with marrow MRD(mMRD) and outcome according to cytogenetics. Patients & Methods: Four hundred eleven subsequent newly diagnosed multiple myeloma (NDMM) patients transplanted (AHCT) between September 2006 - June 2021 were included prospectively. Standard-risk cytogenetics(SR) is defined as t(11;14), t(6;14), or a normal karyotype , whereas del(17p13), t(4;14), t(14;16), t(14;20), + 1q21 and complex findings are high-risk cytogenetics (HR). In the sample drawn for HPSC quantification of the graft and bone marrow, the number of clonal PCs were quantified by Flow. CD27 PC7 orCD27 A750, CD56 A700, CD19 ECD, CD38 FITC orCD38 A750, CD138 APC, CD45 KO, CD81 PE, CD117 PC7, polyclonal Rabbit Anti-Human Kappa or Lambda Chains /FITC antibodies and acquisition of at least 10 5 cells per tube Analysis was performed using the Navios Flow Cytometer (3L10C, Beckman Coulter) using the Kaluza software (Beckman Coulter, USA) according to the criteria defined by Montero et al and also abnormal distribution of kappa vs. Lambda expression. Undetectable MRD was defined as absence of clonal PCs at a sensitivity of 10 -4 prior to 2017(n=217) and 10 -5 after 2017(n=131). MRD assessment is similar in the graft and marrow. Impact of postinduction MRD analysis was performed in 131 patients with MRD data of 10 -5 sensitivity level. Results were reported in the intention-to-treat (ITT) population for mMRD. Results: Median follow-up after AHCT was 61.5 months (range:3.2-168) (prior to 2017) and 17.7 months (range: 3-47.4) (after 2017). Induction regimen consisted of bortezomib without or with immunomodulatory drug (IMID) 78.8%, 2.8% (prior to 2017) and 74.1%, 22.9% (after 2017). Consolidation 18% (n=39/217), 22.1% (n=29/131) (prior and after 2017) and maintenance 21.2% (n=46/217), 35.1% (n=46/131) (prior and after 2017) were administered based on the response to AHCT. Cytogenetically HR was observed 14.1% (n=47) (among total cohort) and 15.8% (n=19) (after 2017 cohort). Post-induction biochemical response distribution among patients with undetectable MRD are shown in Table-1. MRD assessments were performed at a sensitivity of 10 -4 and 10 -5 in graft (n=147 and 76), marrow (n=18 and 4) or both (n=52 and 51). A statistically significant correlation was detected between marrow and graft MRD only at sensitivity level 10 -5 (SE: 0.638, p&lt;0.001). Additionally, correlations between CR and gMRD (Kappa coefficient (SE): -0.284, p=0.03); CR and mMRD (SE: -0.452, p:0.001) were found. Since marrow and graft MRD results are correlated, all graft and marrow results were merged for the multivariate analysis (MVA) (Table-2). Having undetectable vs detectable MRD in either graft or marrow estimates a 2 years-PFS of 83.6% vs 46.5% (p=0.007). Among 42 MRD(-) patients, only four (two with HR)have relapsed. There is a tendency for better two year probability of PFS with undetectable mMRD vs gMRD at 10-5 ( not reached vs 84.7% ; ns)(Figure 1). The patients (after 2017) are divided into four groups according to MRD status and cytogenetic risk stratification: MRD(-)SR (n=35; 29.2%), MRD(-)HR (n=7; 5.8%), MRD(+)SR (n=66; 55%), MRD(+)HR (n=12; 10%). Kaplan-Meier curves revealed significant differences in PFS among these groups (p=0.03) (Figure-2). Conclusion: Our real-world triplet drug induction-based experience shows for the first-time post-induction mMRD and MRD to be correlated with each other and with PFS. PFS with MRD(-) at 10 -5 results have displayed a better outcome compared to 10 -4. MVA showed MRD and age to determine PFS, independent from post-induction CR, ISS and cytogenetic risk. Although observed less frequently, achieving post-induction MRD(-) either in graft or marrow may ameliorate the poor prognosis of HR. With improvement in induction it may be possible to achieve more frequent MRD(-) and thus analyze the impact of each cytogenetics risk group ie 1q amplification separately. Furthermore, MRD in graft may be a non-invasive therapeutic efficacy tool which is subject to less sampling variation. Figure 1 Figure 1. Disclosures Beksac: Amgen,Celgene,Janssen,Takeda,Oncopeptides,Sanofi: Consultancy, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document