scholarly journals Osmotic Hemolysis of Chemically Modified Red Blood Cells

Blood ◽  
1969 ◽  
Vol 33 (2) ◽  
pp. 170-178 ◽  
Author(s):  
RICHARD F. BAKER ◽  
NAOMI R. GILLIS

Abstract The mechanism of osmotic hemolysis of human red blood cells has been investigated after mild fixation in glutaraldehyde. A mass of precipitated hemoglobin (crown) is seen around a single membrane break which may be as large as 2µ in diameter. Ghosts with large holes are not seen and it is believed that membrane repair takes place. Hemoglobin extrusion by this mechanism takes place only around the rim of the red cell. Both old and young red cells exhibit crown formation, but old cells require longer fixation than do young cells. A correlation with previous work on mode of osmotic hemolysis of red cells is discussed.

2021 ◽  
Vol 12 ◽  
Author(s):  
Perumal Thiagarajan ◽  
Charles J. Parker ◽  
Josef T. Prchal

Normal human red blood cells have an average life span of about 120 days in the circulation after which they are engulfed by macrophages. This is an extremely efficient process as macrophages phagocytose about 5 million erythrocytes every second without any significant release of hemoglobin in the circulation. Despite large number of investigations, the precise molecular mechanism by which macrophages recognize senescent red blood cells for clearance remains elusive. Red cells undergo several physicochemical changes as they age in the circulation. Several of these changes have been proposed as a recognition tag for macrophages. Most prevalent hypotheses for red cell clearance mechanism(s) are expression of neoantigens on red cell surface, exposure phosphatidylserine and decreased deformability. While there is some correlation between these changes with aging their causal role for red cell clearance has not been established. Despite plethora of investigations, we still have incomplete understanding of the molecular details of red cell clearance. In this review, we have reviewed the recent data on clearance of senescent red cells. We anticipate recent progresses in in vivo red cell labeling and the explosion of modern proteomic techniques will, in near future, facilitate our understanding of red cell senescence and their destruction.


Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 214-217 ◽  
Author(s):  
PA Aarts ◽  
PA Bolhuis ◽  
KS Sakariassen ◽  
RM Heethaar ◽  
JJ Sixma

Abstract The hematocrit is one of the main factors influencing platelet adherence to the vessel wall. Raising the hematocrit causes an increase of platelet accumulation of about an order of magnitude. Our studies concern the role of red cell size. We have studied this effect using an annular perfusion chamber, according to Baumgartner, with human umbilical arteries and a steady-flow system. Normal human red blood cells (MCV 95 cu mu) increased platelet adherence sevenfold, as the hematocrit increases from 0 to 0.6. Small erythrocytes from goats (MCV 25 cu mu) caused no increment in adherence in the same hematocrit range. Rabbit erythrocytes (MCV 70 cu mu) caused an intermediate increase in adherence. Red blood cells from newborns (MCV 110–130 cu mu) caused a larger increase in platelet adherence than normal red cells at hematocrit 0.4. These results were further confirmed with large red blood cells from two patients. Experiments with small red cells (MCV 70 cu mu) of patients with iron deficiency showed that platelet adherence was similar to normal red cells, provided the red cell diameter was normal. Small red blood cells of a patient with sideroblastic anemia caused decreased adherence. These data indicate that red cell size is of major importance for platelet adherence. Red cell diameter is more important than average volume. However, for size differences in the human range, the hematocrit remains the dominant parameter.


Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 214-217 ◽  
Author(s):  
PA Aarts ◽  
PA Bolhuis ◽  
KS Sakariassen ◽  
RM Heethaar ◽  
JJ Sixma

The hematocrit is one of the main factors influencing platelet adherence to the vessel wall. Raising the hematocrit causes an increase of platelet accumulation of about an order of magnitude. Our studies concern the role of red cell size. We have studied this effect using an annular perfusion chamber, according to Baumgartner, with human umbilical arteries and a steady-flow system. Normal human red blood cells (MCV 95 cu mu) increased platelet adherence sevenfold, as the hematocrit increases from 0 to 0.6. Small erythrocytes from goats (MCV 25 cu mu) caused no increment in adherence in the same hematocrit range. Rabbit erythrocytes (MCV 70 cu mu) caused an intermediate increase in adherence. Red blood cells from newborns (MCV 110–130 cu mu) caused a larger increase in platelet adherence than normal red cells at hematocrit 0.4. These results were further confirmed with large red blood cells from two patients. Experiments with small red cells (MCV 70 cu mu) of patients with iron deficiency showed that platelet adherence was similar to normal red cells, provided the red cell diameter was normal. Small red blood cells of a patient with sideroblastic anemia caused decreased adherence. These data indicate that red cell size is of major importance for platelet adherence. Red cell diameter is more important than average volume. However, for size differences in the human range, the hematocrit remains the dominant parameter.


Blood ◽  
1959 ◽  
Vol 14 (4) ◽  
pp. 399-408 ◽  
Author(s):  
WILLIAM H. CROSBY

Abstract During all the stages of a red cell’s life the normal spleen exerts a normal function. Eight of these functions have been considered: (1) erythropoiesis; (2) an effect upon red cell production; (3) an effect upon maturation of the red cell surface; (4) the reservoir function; (5) the "culling function"; (6) iron turnover and storage; (7) the "pitting function"; (8) destruction of old red cells.


1989 ◽  
Vol 203 ◽  
pp. 381-400 ◽  
Author(s):  
D. Halpern ◽  
T. W. Secomb

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.


Blood ◽  
1961 ◽  
Vol 18 (3) ◽  
pp. 349-363 ◽  
Author(s):  
STANLEY YACHNIN ◽  
FRANK H. GARDNER

Abstract Agglutinins for various artificially altered red blood cells belong to the class of 19S macroglobulins, which migrate electrophoretically as fast gamma or slow beta globulins. The agglutinin activity of serum for altered red cells is readily destroyed by sulfhydryl compounds. Hemolysins for altered red cells are not readily recoverable from serum fractions prepared by starch block electrophoresis or density gradient ultracentrifugation, but, when present, are found to have the same properties. This information lends credence to the concept of these serum factors as examples of "natural antibody," although the stimulus to their formation is not understood. The sera from patients with various types of hemolytic anemias and various dysproteinemias including macroglobulinemia were found to contain normal amounts of altered red cell agglutinins and hemolysins. The sera from three patients with congenital agammaglobulinemia were studied. Two of these sera contained agglutinins and hemolysins for altered red blood cells, as well as isohemolysins and isoagglutinins. The significance of this finding is discussed. The "T" agglutinin and the agglutinin for periodate-treated red cells, both of which are macroglobulins, have been shown by other workers to be absent from newborn sera. Their inability to cross the placenta can be explained by their large size.


2000 ◽  
Vol 89 (3) ◽  
pp. 1198-1204 ◽  
Author(s):  
Robert L. Conhaim ◽  
Lance A. Rodenkirch ◽  
Kal E. Watson ◽  
Bruce A. Harms

High lung inflation pressures compress alveolar septal capillaries, impede red cell transit, and interfere with oxygenation. However, recently introduced acellular hemoglobin solutions may enter compressed lung capillaries more easily than red blood cells. To test this hypothesis, we perfused isolated rat lungs with fluorescently labeled diaspirin cross-linked hemoglobin (DCLHb; 10%) and/ or autologous red cells (hematocrit, 20). Septal capillaries were compressed by setting lung inflation pressure above vascular pressures (zone 1). Examination by confocal microscopy showed that DCLHb was distributed throughout alveolar septa. Furthermore, this distribution was not affected by adding red blood cells to the perfusate. We estimated the maximum acellular hemoglobin mass within septa to be equivalent to that of 15 red blood cells. By comparison, we found an average of 2.7 ± 4.6 red cells per septum in zone 1. These values increased to 30.4 ± 25.8 and 50.4 ± 22.1 cells per septum in zones 2 and 3, respectively. We conclude that perfusion in zone 1 with a 10% acellular hemoglobin solution may increase the hemoglobin concentration per septum up to fivefold compared with red cell perfusion.


1975 ◽  
Vol 18 (2) ◽  
pp. 227-239
Author(s):  
D. Gingell ◽  
I. Todd

We have devised a method of making a flat oil/water interface which remains flat on inversion. Cell adhesion to the interface can be observed microscopically. Glutaraldehyde-fixed human red blood cells adhere to the interface between physiological saline and hexadecane containing surface-active behenic acid at pH values below about 7-5. At high pH values, cells are prevented from adhering due to dissociation of the carboxyl groups of behenic acid oriented in the interface. The negative red cells are driven away electrostatically. Adherent and non-adherent cells remain on the aqueous side of the interface and do not appreciably deform it when adherent. Cells are electrostatically attracted to a similar interface containing positively charged octadecyltrimethylammonium ions. Cells also adhere to an interface containing octadecanol, which carries no charge. Underlying both electrostatic repulsion and attraction between red cells and oil/water interfaces is an attractive force which may be of electrodynamic (van der Waals) origin.


1981 ◽  
Vol 51 (1) ◽  
pp. 131-134 ◽  
Author(s):  
J. H. Boucher ◽  
E. W. Ferguson ◽  
C. L. Wilhelmsen ◽  
N. Statham ◽  
R. R. McMeekin

The erythrocytes of 14 conditioned horses participating in a 157-km endurance ride (requiring 14–21 h) were examined before the ride, immediately upon entering the 44–91-, and 130-km rest stops, and at the finish. At the first rest stop (44 km), the mean erythrocyte count increased 41% (P less than 0.001), the mean hematocrit (Hct) increased 30% (P less than 0.001) and the mean hemoglobin (Hb) increased 33% ( P less than 0.001). Although subsequent mean erythrocyte counts, Hct, and Hb values remained significantly elevated above controls, the values decreased 9–9% from the 4-km values later in the ride. These changes suggest a lost of red cells mass during the prolonged exercise. Spiculated red blood cells that increased markedly in number during exercise were also observed in these conditioned horses. The appearance of an increased number of spiculated red cells with exercise was associated with corresponding changes in red cell indices.


Blood ◽  
1955 ◽  
Vol 10 (4) ◽  
pp. 370-376 ◽  
Author(s):  
HANS G. KEITEL ◽  
H. BERMAN ◽  
H. JONES ◽  
E. MACLACHLAN

Abstract 1. Red cells from different layers of centrifuged cells vary in composition. Cells obtained from the upper layer, which is relatively richer in reticulocytes, contain more water, sodium, potassium, chloride and phosphorus than the remaining cells. 2. The direct method of analysis of red blood cells using a constricted type centrifuge tube to separate the entire red cells sample from buffy layer cells and from plasma avoids the errors in direct analysis caused by different cell population in upper and lower layers of centrifuged cells and the cumulative errors inherent in indirect analysis. 3. Using the direct method and a constricted type centrifuge tube, the means and standard deviations of the water and mineral content of the erythrocytes and plasma of 11 normal males and 11 normal females were determined. Males were found to have a higher sodium content of red cells and plasma. 4. The sum of the molal concentrations of sodium, potassium, chloride and phosphorus in red cells is not always equal to the sum of the molal concentrations of these minerals in the plasma.


Sign in / Sign up

Export Citation Format

Share Document