scholarly journals Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes

Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 456-464 ◽  
Author(s):  
CW Francis ◽  
VJ Marder ◽  
SE Martin

Abstract Plasmic degradation of crosslinked fibrin has been studied to identify the proteolytic cleavages that convert the clot into a soluble lysate and also to identify the derivatives that are likely to circulate during clot dissolution. Initial polypeptide chain cleavages do not disrupt the solid clot matrix. With continued exposure to plasmin, high molecular weight derivatives are produced that remain attached to the clot by noncovalent forces. Further degradation then results in the liberation into solution of several large, noncovalently bound complexes. Progressive degradation of the largest, initially liberated complexes to the terminal derivatives, DD/E, DD, and E, occurs in solution after their release from the clot. As the fibrin clot is exposed to plasmin for longer intervals, progressive dissolution occurs, but the structure of the covalently bound insoluble fibrin core, the noncovalently attached derivatives, and the liberated complexes remains constant. Since much of the initially liberated protein is in complexes larger than DD/E, these derivatives probably represent the more prevalent plasmic degradation products of crosslinked fibrin in vivo.

Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 456-464 ◽  
Author(s):  
CW Francis ◽  
VJ Marder ◽  
SE Martin

Plasmic degradation of crosslinked fibrin has been studied to identify the proteolytic cleavages that convert the clot into a soluble lysate and also to identify the derivatives that are likely to circulate during clot dissolution. Initial polypeptide chain cleavages do not disrupt the solid clot matrix. With continued exposure to plasmin, high molecular weight derivatives are produced that remain attached to the clot by noncovalent forces. Further degradation then results in the liberation into solution of several large, noncovalently bound complexes. Progressive degradation of the largest, initially liberated complexes to the terminal derivatives, DD/E, DD, and E, occurs in solution after their release from the clot. As the fibrin clot is exposed to plasmin for longer intervals, progressive dissolution occurs, but the structure of the covalently bound insoluble fibrin core, the noncovalently attached derivatives, and the liberated complexes remains constant. Since much of the initially liberated protein is in complexes larger than DD/E, these derivatives probably represent the more prevalent plasmic degradation products of crosslinked fibrin in vivo.


2001 ◽  
Vol 85 (04) ◽  
pp. 671-678 ◽  
Author(s):  
Sybille Zips ◽  
Hanimsah Ergül ◽  
Dieter Heene ◽  
Carl-Erik Dempfle ◽  

SummaryAlthough D-dimer has gained widespread clinical use as a parameter for detection of in vivo fibrin formation, the issue of standardization of D-dimer assays remains to be resolved. The FACT study was performed to generate basic data for development of calibrators and standard preparations.A set of 86 samples, including plasma samples from patients with DIC, DVT, and other clinical conditions, serial dilutions of pooled plasma samples, and plasma samples containing fibrinogen- and fibrin derivatives, were distributed to 12 manufacturers of D-dimer assays.D-dimer assays differ concerning specificity for crosslinked fibrin, and preference for either high molecular weight fibrin complexes, or low molecular weight fibrin degradation products. Terminal plasmin digests of fibrin clots for calibration produce aberrant results in some assays, especially those with preference for high molecular weight crosslinked fibrin derivatives. The best conformity is achieved by the use of pooled plasma samples from patients with high levels of D-dimer antigen in plasma. In vitro preparations containing a comparable composition of fibrin derivatives to clinical plasma samples may also serve as reference material.


1975 ◽  
Vol 49 (2) ◽  
pp. 149-156 ◽  
Author(s):  
P. J. Gaffney ◽  
D. A. Lane ◽  
M. Brasher

1. The factor XIII-mediated cross-linked α chains in fibrin have no effect on the nature of the fragments released during the solubilization of fibrin by plasmin. 2. Besides the known D dimer and E fragments solubilized during the lysis of cross-linked fibrin, other fragments have been observed on sodium dodecyl sulphate-polyacrylamide gel electrophoresis which have a molecular weight of about 135 000. After prolonged plasmin digestion, these fragments (U fragments) were no longer evident on the gels and the high-molecular-weight E antigen was absent. It is assumed that the E antigen was associated with the U fragments. These fragments also cross-reacted with an anti-D serum. 3. The U fragments have been tentatively presumed to be a factor XIII-mediated cross-linked D–E complex since they degrade only after prolonged degradation with plasmin. Whereas it is known that the fibrin D dimer fragment contains the cross-linked γ chain residues of the originating fibrin, the presumed covalent cross-linking of the D–E fragments has not been proved. 4. The presence of these high-molecular-weight fragments, containing the E antigen, in cross-linked human fibrin digests should be taken into account in the development of D dimer assays to monitor fibrin lysis in vivo.


1979 ◽  
Author(s):  
P.J. Gaffney ◽  
Franklin Joe

In vitro data have indicated that plasmin-mediated lysis of crosslinked (XL) fibrin in vivo yields only one distinct high molecular weight complex, which has the empirical formula, 2D-E. We have compared the compositions of lysates obtained from I125 labelled and unlabelled fibrin clots in buffer, human and animal sera, and trasylol, using conventional immunological, chromatographic and electrophoretic techniques. Both trasylol (10 KI units/ml) and various animal sera stabilised the D dimer-E complex following lysis of XL fibrin and only in buffer were free D dimer and E fragments observed. The D dimer-E complex was isolated by affinity chromatography and the expect ed polypeptide chain composition, including the crosslinked γ chain remnants, was confiimed. By combining various molar ratios of D dimer and E the expected equimolar nature of the complex was confirmed and the association sites between D dimer and E may be synonymous with the polymerization sites already shown to exist in the 0 and E domains of fibrinogen. Using I125 labelled fibrin clots, covalently linked high molecular weight complexes (up to 1 x 106Mv) were observed during in vitro lysis with plasmin. At least one of these was identified as a crosslinked γ dimer while other larger fragments may be covalently linked complexes of the “D dimer-E subunit”. A hypothesis for XL fibrin lysis in vivo is proposed which complements accepted ideas on fibrin clot formation.


1975 ◽  
Author(s):  
P. J. Gaffney ◽  
K. Lord ◽  
R. D. Thornes

Brinase (an extract of Aspergillus Oryzae) was shown to rapidly digest human fibrinogen in vitro to aggregable degradation products with a molecular size range of 310,000 to 230,000 the latter fragments being more slowly digested to core fragments, Dbr and Ebr. The fibrinogen polypeptide chain susceptibility to Brinase attack was in the order Aα, γ, Bβ, Lysis of the Bβ chain seems to be the rate limiting step in the conversion of the high molecular weight fragments (MW 310,000–230,000) to the core fragments Dbr and Ebr. The conservation of NH2 terminal Tyrosine during fibrinogen digestion and the very transient existence of D dimer fragments during totally crosslinked fibrin lysis suggest that the carboxy end of the γ chain is prone to Brinase attack. The crosslinked α chains of fibrin, while resistant to plasmin, are vigorously digested by Brinase. The plasma of cancer patients being treated with Brinase contained degraded fibrinogen (lacking intact Aα chains) and their aggregates. These aggregates contained some crosslinked γ chains (γ-γ dimers) suggesting that Brinase in vivo exorcises both a lytic and coagulant effect. Thrombin mediated clots in all the plasmas examined contained no crosslinked α chains. Positive plasma ethanol gelation tests can be explained by the presence of the aggregable high molecular weight fragments observed during the in vitro lysis of fibrinogen by Brinase.


1973 ◽  
Vol 72 (2) ◽  
pp. 235-242 ◽  
Author(s):  
A. M. Reuter ◽  
J. C. Hendrick ◽  
J. Sulon ◽  
P. Franchimont

ABSTRACT The percentage of LH* bound to antibodies that have been covalently bound to cellulose is diminished in the presence of LH-free human serum and sera from various species of animals. Serum fractionation studies on Sephadex G 200 show that the greatest interference comes from the proteins eluted in the void volume i. e. the high molecular weight proteins. Specifically, the gamma M globulins and the α2-macroglobulins appear to play an important role, as demonstrated by tests in which these proteins were neutralized by gamma M and α2-macroglobulin antisera.


2021 ◽  
Author(s):  
Nan Zheng ◽  
Xiahui Li ◽  
Shangwei Huangfu ◽  
Kangkai Xia ◽  
Ruofei Yue ◽  
...  

A linear poly-porphyrin with high Mw and conjugated by PEG and acetazolamide was developed with enhanced singlet oxygen quantum yield, improved photo-toxicity and excellent in vivo photodynamic therapy.


1984 ◽  
Vol 99 (4) ◽  
pp. 1372-1378 ◽  
Author(s):  
K A Resing ◽  
K A Walsh ◽  
B A Dale

A major event in the keratinization of epidermis is the production of the histidine-rich protein filaggrin (26,000 mol wt) from its high molecular weight (greater than 350,000) phosphorylated precursor (profilaggrin). We have identified two nonphosphorylated intermediates (60,000 and 90,000 mol wt) in NaSCN extracts of epidermis from C57/Bl6 mice by in vivo pulse-chase studies. Results of peptide mapping using a two-dimensional technique suggest that these intermediates consist of either two or three copies of filaggrin domains. Each of the intermediates has been purified. The ratios of amino acids in the purified components are unusual and essentially identical. The data are discussed in terms of a precursor containing tandem repeats of similar domains. In vivo pulse-chase experiments demonstrate that the processing of the high molecular weight phosphorylated precursor involves dephosphorylation and proteolytic steps through three-domain and two-domain intermediates to filaggrin. These processing steps appear to occur as the cell goes through the transition cell stage to form a cornified cell.


Sign in / Sign up

Export Citation Format

Share Document