scholarly journals The expression and modulation of human myeloid-specific antigens during differentiation of the HL-60 cell line

Blood ◽  
1983 ◽  
Vol 61 (6) ◽  
pp. 1215-1221 ◽  
Author(s):  
RF Graziano ◽  
ED Ball ◽  
MW Fanger

Abstract Antigenic changes detected by myeloid-specific monoclonal antibodies on HL-60 cells induced to differentiate by various chemical mediators were investigated using flow cytometry. Antigen levels detected by monocyte- granulocyte-specific monoclonal antibodies AML-2–23, 61D3, and 63D3 increased dramatically after differentiation of HL-60 cells along the granulocytic pathway by the addition of dimethyl formamide (DMF), dimethylsulfoxide (DMSO), or cis-retinoic acid. The expression of these same antigens also increased in conjunction with monocytoid differentiation when HL-60 cells were treated with supernatants from leukocytes stimulated with phytohemagglutinin (PHA-LCM) or with mixed lymphocyte conditioned medium (MLC). In contrast, treatment of HL-60 cells with phorbol 12-myristate 13-acetate (PMA), which also induced differentiation along the monocyte pathway, had no effect on the expression of these monocyte-associated antigens. The expression of antigens on HL-60 cells recognized by the granulocyte-specified monoclonal antibodies PMN 6 and PMN 29 decreased after treatment of HL- 60 cells with PMA, but remained constant after treatment with DMF, DMSO, cis-retinoic acid, PHA-LCM, or MLC. These results suggest that normal myeloid differentiation may be dependent on various signals and that morphological and cell surface marker maturity may, under some conditions, be separable. The utility of the HL-60 cell line as a model of myeloid differentiation and for evaluation of inductive signals is discussed.

Blood ◽  
1983 ◽  
Vol 61 (6) ◽  
pp. 1215-1221
Author(s):  
RF Graziano ◽  
ED Ball ◽  
MW Fanger

Antigenic changes detected by myeloid-specific monoclonal antibodies on HL-60 cells induced to differentiate by various chemical mediators were investigated using flow cytometry. Antigen levels detected by monocyte- granulocyte-specific monoclonal antibodies AML-2–23, 61D3, and 63D3 increased dramatically after differentiation of HL-60 cells along the granulocytic pathway by the addition of dimethyl formamide (DMF), dimethylsulfoxide (DMSO), or cis-retinoic acid. The expression of these same antigens also increased in conjunction with monocytoid differentiation when HL-60 cells were treated with supernatants from leukocytes stimulated with phytohemagglutinin (PHA-LCM) or with mixed lymphocyte conditioned medium (MLC). In contrast, treatment of HL-60 cells with phorbol 12-myristate 13-acetate (PMA), which also induced differentiation along the monocyte pathway, had no effect on the expression of these monocyte-associated antigens. The expression of antigens on HL-60 cells recognized by the granulocyte-specified monoclonal antibodies PMN 6 and PMN 29 decreased after treatment of HL- 60 cells with PMA, but remained constant after treatment with DMF, DMSO, cis-retinoic acid, PHA-LCM, or MLC. These results suggest that normal myeloid differentiation may be dependent on various signals and that morphological and cell surface marker maturity may, under some conditions, be separable. The utility of the HL-60 cell line as a model of myeloid differentiation and for evaluation of inductive signals is discussed.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3345-3355 ◽  
Author(s):  
Yury Monczak ◽  
Michel Trudel ◽  
William W. Lamph ◽  
Wilson H. Miller

Abstract Retinoic acid (RA) induces differentiation, followed by apoptosis in acute promyelocytic leukemia (APL) cells, both in vitro and in patients. One problem in understanding these mechanisms is to distinguish molecular events leading to differentiation from those leading to apoptosis. We have identified a leukemic cell line, PLB-985, where RA directly induces apoptosis with no morphologic, genetic, or cell-surface marker evidence of differentiation. These cells differentiate following dimethyl sulfoxide (DMSO), but not RA, treatment. Two-color flow cytometry showed no alteration of the cell cycle after RA treatment, and cell-surface marker analysis of CD11a, CD11b, and CD13 showed no modulation typical of differentiating cells. RNA expression of myeloblastin and transglutaminase, genes regulated by RA-induced differentiation in NB4 cells, was unchanged by RA treatment. Instead, RA induced apoptosis, as shown by typical apoptotic morphological features, genomic DNA laddering, and positive labeling in the TUNEL assay. We found that induction of apoptosis in this model requires a different pattern of retinoid receptor binding and transcriptional activation than is seen in APL cells. As previously described, treatment with retinoid receptor-selective ligands showed that stimulation of RAR alone is sufficient to induce differentiation and apoptosis in NB4 cells, and that stimulation of RXR has no effect on the parameters analyzed. In PLB-985 cells, on the other hand, apoptosis was induced only upon costimulation of both RAR and RXR. Stimulation of either receptor alone had no effect on the cells. Consistent with these findings, bcl-2 RNA and protein levels were downregulated after stimulation of both RAR and RXR, but not with an RAR-specific ligand alone, as in NB4 cells. The expression of several other bcl-2 family members (bcl-X, ich-1, bax, bag, and bak ) and retinoid receptors (RARα, RXRα, and RXRβ) was not affected by treatment with RAR- and/or RXR-activating retinoids; RARβ RNA was undetectable before and after retinoid treatment. Thus, our cell model provides a useful tool in determining the genetic events mediating apoptosis as a response to RA, unobscured by events implicated in differentiation.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2826-2832 ◽  
Author(s):  
JV Raelson ◽  
C Nervi ◽  
A Rosenauer ◽  
L Benedetti ◽  
Y Monczak ◽  
...  

Acute promyelocytic leukemia (APL) is characterized by the translocation, t(15;17) and the expression of a PML/RAR alpha fusion protein that is diagnostic of the disease. There is evidence that PML/RAR alpha protein acts as a dominant negative inhibitor of normal retinoid receptor function and myeloid differentiation. We now show that the PML/RAR alpha fusion product is directly downregulated in response to retinoic acid (tRA) treatment in the human APL cell line, NB4. tRA treatment induces loss of PML/RAR alpha at the protein level but not at the level of mRNA, as determined by Northern blots, by Western blots, and by ligand binding assays and in binding to RA-responsive DNA elements. We present evidence that this regulation is posttranslational. This evidence suggests that tRA induces synthesis of a protein that selectively degrades PML/RAR alpha. We further show that this loss of PML/ RAR-alpha is not limited to the unique APL cell line. NB4, because PML/RAR alpha protein is selectively downregulated by tRA when expressed in the transfected myeloid cell line U937. The loss of PML/RAR alpha may be directly linked to tRA-induced differentiation, because in a retinoid-resistant subclone of NB4, tRA does not decrease PML/RAR alpha protein expression. In NB4 cells, the specific downregulation of the fusion protein decreases the ratio of PML/RAR alpha to wild-type RAR alpha. Because the ratio of expression of PML/RAR alpha to wild-type RAR alpha and PML may be important in maintaining the dominant negative block of myelocytic differentiation, these data suggest a molecular mechanism for restoration by tRA normal myeloid differentiation in APL cells.


Blood ◽  
1983 ◽  
Vol 61 (1) ◽  
pp. 171-179 ◽  
Author(s):  
D Ferrero ◽  
S Pessano ◽  
GL Pagliardi ◽  
G Rovera

Abstract The surface changes occurring in three acute myeloid leukemia cell lines (HL60, ML3, and KG1) induced to differentiate by a variety of agents (dimethylsulfoxide, retinoic acid, 12-O-tetradecanoylphorbol-13- acetate, and factors present in lymphocyte conditioned medium) were probed using monoclonal antibodies that are differentiation stage- and lineage-specific. In all cases, the differentiated phenotype was defective and varied with the inducing agent and the cell line used. HL60 proved to be the most sensitive to the effect of the inducers. Retinoic acid was better than DMSO, and TPA was better than the medium factors in the ability to induce granulocytic and monocytic differentiation, respectively, in HL60 cells. These findings indicate that the differentiation block in acute myeloid leukemias is heterogeneous and that each cell line has different phenotypic characteristics that are responsible for the extent of differentiation obtained with a given inducer. These results also suggest that the extent of the differentiation response in vitro may be improved by the use of more suitable inducers for each specific leukemic line.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3513-3513
Author(s):  
David B. Sykes ◽  
Mark K Haynes ◽  
Nicola Tolliday ◽  
Anna Waller ◽  
Julien M Cobert ◽  
...  

Abstract Abstract 3513 AML in adults is a devastating disease with a 5-year survival rate of 25%. We lack new treatments for AML, and the chemotherapy standard of care remains unchanged in thirty years. One success story in the treatment of AML has been the discovery of drugs that trigger the differentiation of leukemic blasts in the small subset of patients with acute promyelocytic leukemia. However, differentiation therapy is unfortunately not available for the remaining 90% of non-APL acute myeloid leukemia patients. Understanding and targeting the mechanism of differentiation arrest in AML has been under investigation for more than four decades. There is growing evidence to support the role of the homeobox transcription factors in normal hematopoietic differentiation as well as malignant hematopoiesis. The persistent, and inappropriate, expression of the homeobox gene HoxA9 has been described in the majority of acute myeloid leukemias. This implicates HoxA9 dysregulation as a common pathway of differentiation arrest in myeloid leukemias and suggests that by understanding and targeting this pathway, one might be able to overcome differentiation arrest. In cultures of primary murine bone marrow, constitutive expression of HoxA9 blocks myeloid differentiation and results in the outgrowth of immature myeloid cell lines. The mechanism by which HoxA9 causes differentiation arrest is not known and no compounds exist that inhibit HoxA9. We developed a murine cell line model in which the cells were blocked in differentiation by a conditional version of HoxA9. In this system, an estrogen-dependent ER-HoxA9 protein was generated by fusion with the estrogen receptor hormone-binding domain. When expressed in cultures of primary murine bone marrow, immortalized myeloblast cell lines can grow indefinitely in the presence of stem cell factor and beta-estradiol. Upon removal of beta-estradiol, and inactivation of HoxA9, these cell lines undergo synchronous and terminal myeloid differentiation. We took advantage of an available transgenic mouse model in which GFP was expressed downstream of the lysozyme promoter, a promoter expressed only in mature neutrophils and macrophages. Cell lines derived from the bone marrow of this lysozyme-GFP mouse were GFP-negative at baseline and brightly GFP-positive upon differentiation. In this manner, we generated a cell line with a built-in reporter of differentiation. These cells formed the basis of a high-throughput screen in which cells were incubated with small molecules for a period of four days in 384-well plate format. The cells were assayed by multi-parameter flow cytometry to assess for toxicity and differentiation. Compounds that triggered green fluorescence were scored as “HITS” and their pro-differentiation effects confirmed by analysis of morphology and cell surface markers. Given the availability of cells and the simple and reliable assay, we performed both a pilot screen of small molecules at The Broad Institute as well as an extensive screen of the NIH Molecular Libraries Small Molecule Repository. The screen of more than 350,000 small molecules was carried out in collaboration with the University of New Mexico Center for Molecular Discovery. We have identified one lead class of compounds - prostacyclin agonists – capable of promoting myeloid differentiation in this cell line model of AML. Using a parallel cell line derived from a prostacyclin receptor knock-out mouse, we confirmed that activity was due to signaling through the prostacyclin receptor. The role of prostacyclin signaling in myeloid differentiation has not been previously described. Analysis of gene expression demonstrated that the expression of the prostacyclin receptor is seen in ∼60% of in primary human AML samples. This is a potentially exciting finding as prostacyclin agonists (e.g. treprostinil) are clinically relevant as well as FDA-approved. Their potential role in the treatment of acute myeloid leukemia is unknown. Here we present the details of our high-throughput flow cytometry system and preliminary identification of pro-differentiation agents in AML. If successful, we anticipate that one of these small molecules may offer insight into a mechanism for overcoming differentiation arrest, and may also translate into a novel, clinically relevant treatment for acute myeloid leukemia. Disclosures: Sklar: IntelliCyt: Founder of IntelliCyt, the company that sells the HyperCyt high-throughput flow cytometry system. Other. Zon:Fate Therapeutics: Founder Other.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14613-e14613
Author(s):  
K. A. Robertson ◽  
E. S. Colvin ◽  
M. R. Kelley ◽  
M. L. Fishel

e14613 Background: ATRA + chemotherapy has improved the treatment of promyelocytic leukemia(APL). However, 25% of ATRA treated APL patients experience toxicities that comprise the RAS (life-threatening respiratory distress, edema, renal failure, hypotension, coagulopathy and rising blast count). One approach to prevent RAS is to limit blast proliferation and enhance myeloid differentiation. Ref-1 is a DNA repair protein that functions in redox regulation of cellular proteins, such as Fos, Jun, p53, and NFkB. HL60 myeloid leukemia cells are promyeloblasts that respond to ATRA with granulocytic differentiation/growth arrest. Prior studies suggest Ref-1 redox control is integral to ATRA-induced differentiation. To define the role of the redox function of Ref-1, we used the Ref-1 specific drug, APX3330, to block Ref-1 redox function and examined the response of HL60 cells to ATRA. Methods: Cell growth assessed using trypan blue. Differentiation was evaluated by morphology and expression of CD11b by flow cytometry. Apoptosis was assayed by annexin-PI staining on flow cytometry and cell cycle analysis assayed with propidium iodide flow cytometry. To assess activation of the MAPK pathway, BLR-1 expression was determined by real time PCR. Results: 1) APX3330 blockade of Ref-1 redox function resulted in limited cell growth yet a profound increase in differentiation and a moderate increase in apoptosis. 2) dose dependent studies with ATRA showed a similar degree of differentiation in cells treated with 10 μM ATRA to cells treated with APX3330 + 0.01 μM ATRA; allowing HL60 cells + APX3330 to give a similar response to a 1000 fold lower dose of ATRA. APX3330 alone did not induce differentiation and induced only minimal apoptosis but in combination with ATRA, increased the number of cells in G1/G0 phase significantly. 3) APX3330 + ATRA increased BLR-1 expression significantly by real time PCR suggesting enhanced activation of the MAPK pathway. Conclusions: APX3330 + ATRA limits HL60 growth and dramatically enhances terminal granulocytic differentiation. These finding may provide a therapeutic approach for prevention of the RAS. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document