scholarly journals Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic, and acute lymphocytic human leukemia cell lines

Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 230-233 ◽  
Author(s):  
G Tortora ◽  
P Tagliaferri ◽  
T Clair ◽  
O Colamonici ◽  
LM Neckers ◽  
...  

Abstract Cyclic AMP (cAMP)-dependent protein kinase may play a role in the functional and morphological differentiation of leukemic cells. In this study, we showed that the cAMP analogs, potent activators of protein kinase recently shown to be selective for either site 1 or site 2 cAMP binding sites of protein kinase, demonstrate potent growth inhibition of acute promyelocytic, chronic myelocytic, and acute lymphocytic leukemic cell lines with no sign of toxicity. The growth inhibition accompanied monocytic differentiation in HL-60 cells and a loss of nuclear terminal deoxynucleotidyl transferase activity in Molt-4 leukemic cells. The growth inhibition also paralleled a decrease in c- myc protein and RI cAMP receptor protein. Thus, cAMP analogs selective for either site 1 or site 2 of the protein kinase appear to restore a coupling of proliferation and maturation in leukemic cells.

Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 230-233 ◽  
Author(s):  
G Tortora ◽  
P Tagliaferri ◽  
T Clair ◽  
O Colamonici ◽  
LM Neckers ◽  
...  

Cyclic AMP (cAMP)-dependent protein kinase may play a role in the functional and morphological differentiation of leukemic cells. In this study, we showed that the cAMP analogs, potent activators of protein kinase recently shown to be selective for either site 1 or site 2 cAMP binding sites of protein kinase, demonstrate potent growth inhibition of acute promyelocytic, chronic myelocytic, and acute lymphocytic leukemic cell lines with no sign of toxicity. The growth inhibition accompanied monocytic differentiation in HL-60 cells and a loss of nuclear terminal deoxynucleotidyl transferase activity in Molt-4 leukemic cells. The growth inhibition also paralleled a decrease in c- myc protein and RI cAMP receptor protein. Thus, cAMP analogs selective for either site 1 or site 2 of the protein kinase appear to restore a coupling of proliferation and maturation in leukemic cells.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Abstract Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3750-3750
Author(s):  
Angeliki Thanasopoulou ◽  
Katharina Dumrese ◽  
Sarah Picaud ◽  
Oleg Fedorov ◽  
Stefan Knapp ◽  
...  

Abstract The CBP/p300 histone acetyltransferases are key transcriptional regulators of hematopoiesis that have been found to be involved in AML-associated recurrent chromosomal translocations and shown to function as co-activators of leukemogenic fusion oncogenes, suggesting that specific targeting of CBP/p300 may be beneficial for therapy. We characterized the anti-leukemic potential of I-CBP112, a novel chemical inhibitory probe targeting the CBP/p300 bromodomain (BRD). BRDs belong to a diverse family of evolutionary conserved protein-interaction modules recognizing acetylated lysine residues and thereby mediating recruitment of proteins to macromolecular complexes. I-CBP112 represents a new, potent and selective class of BRD inhibitors (oxazepines) binding to recombinant CBP/p300 BRDs with a KD of 151nM and 157nM respectively. Initial characterization by FRAP and BRET assays revealed that I-CBP112 displaced the isolated BRD construct from chromatin but not the full length CBP. I-CBP112 also impaired the interaction of CBP/p300 with p53, resulting in reduced p53-K382 acetylation, reduced p21 expression, and high sensitivity to Doxorubicin-induced DNA damage. We started to explore the effects of the compound on leukemic cells by exposing a series of murine cell lines immortalized by the MLL-CBP fusion and other potent leukemia-associated oncogenes including the MLL-AF9, MLL-ENL, or the NUP98-HOXA9 fusion to increasing doses of I-CBP112. Interestingly, no significant cytotoxicity was observed up to concentrations of 5μM. However, in all cell lines we observed a significant reduced number of colonies formed in methylcellulose, associated with morphological differentiation as observed in Giemsa stained cytospots. Similar to the murine leukemic cell lines we found that I-CBP112 did not cause immediate cytotoxic effects but impaired colony formation and induced cellular differentiation of a series of 18 human leukemic cell lines. Reduced colony formation upon I-CBP112 treatment was also observed of human primary AML blasts but not of CD34+ hematopoietic stem cells from two healthy donors. I-CBP112 effects were studied in more detail in three human leukemia cell lines: SEM (MLL-AF4+), MOLM13 (MLL-AF9+) and Kasumi-1 (AML1-ETO+). Long-term exposure of these cells to I-CBP112 in liquid medium, resulted in a dose-dependent G1 cell cycle arrest, with Kasumi-1 being the most sensitive to the inhibitor, demonstrating further morphological signs of differentiation and apoptotic cell death. Importantly, combination of I-CBP112 with the BET-BRD inhibitor JQ1 or Doxorubicin revealed a clear synergistic effect on cell survival of the AML cell lines except for the combination of I-CBP112 with Doxorubicin on MOLM13. Surprisingly only modest effects of I-CBP112 exposure on the transcriptional programs of SEM, MOLM13 and Kasumi-1 cells were found by microarray expression profiling. Genes found affected were mainly immune response regulators or NFkappaB targets suggesting that attenuation of NFkappaB downstream signals might impair the leukemia initiation capacity reflected by reduced colony formation. Extreme limited dilution assays (ELDA) in methylcellulose, as well as bone marrow transplantations in limiting dilutions using MLL-AF9-transformed murine leukemic blasts revealed that I-CBP112 significantly impaired self-renewal of the leukemic stem cell compartment in vitro and reduced the leukemia-initiating potential in vivo. Taken together, these data demonstrate that selective interference with the CBP/p300 BRD by I-CBP112 has the potential to selectively target leukemic stem cells and opens the way for novel combinatory “BRD inhibitor” therapies for AML and other human cancers. Disclosures No relevant conflicts of interest to declare.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1824 ◽  
Author(s):  
Tomasz Kubrak ◽  
Marcin Czop ◽  
Przemysław Kołodziej ◽  
Marta Ziaja-Sołtys ◽  
Jacek Bogucki ◽  
...  

Background: The insensitivity of cancer cells to therapeutic agents is considered to be the main cause of failure of therapy and mortality of patients with cancer. A particularly important problem in these patients is the phenomenon of multidrug resistance, consisting of abnormal, elevated expression of transport proteins (ABC family). The aim of this research included determination of IC50 values of selected furanocoumarins in the presence and absence of mitoxantrone in leukemia cells and analysis of changes in apoptosis using anexinV/IP and Casp3/IP after 24 h exposure of cell lines to selected coumarins in the presence and absence of mitoxantrone in IC50 concentrations. Methods: Research was conducted on 3 cell lines derived from the human hematopoietic system: HL-60, HL-60/MX1 and HL-60/MX2. After exposure to coumarin compounds, cells were subjected to cytometric analysis to determine the induction of apoptosis by two methods: the Annexin V test with propidium iodide and the PhiPhiLux-G1D2 reagent containing caspase 3 antibodies. Results: All of the furanocoumarin derivatives studied were found to induce apoptosis in leukemia cell lines. Conclusions: Our results clearly show that the furanocoumarin derivatives are therapeutic substances with antitumor activity inducing apoptosis in human leukemia cells with phenotypes of resistance.


Blood ◽  
1982 ◽  
Vol 60 (6) ◽  
pp. 1305-1309 ◽  
Author(s):  
HW Jr Findley ◽  
MD Cooper ◽  
TH Kim ◽  
C Alvarado ◽  
AH Ragab

Two leukemic cell lines (697 and 207) were established from bone marrow cells obtained from children with ALL in relapse. These cell lines were positive for the common-ALL antigen (CALLA), the HLA-DR (i.e., Ia-like) antigen, and for cytoplasmic and surface IgM heavy chains. The lines were negative for other immunoglobulin heavy chains and light chains. The lines had elevated levels of terminal deoxynucleotidyl transferase enzyme and expressed surface antigens found on normal myeloid- macrophage cells (MMA) and on natural killer cells (HNK-1). A minority of cells in line 207 expressed the T-1, T-6, and Leu-1 antigens as detected by monoclonal antibodies. Line 697 was positive for Epstein- Barr virus (EBV), while line 207 did not possess EBV. Line 697 carried a marker chromosome (identified as a translocation between chromosomes 7 and 19), which was also patient's fresh leukemic cells. The leukemic origin of the cell lines was further indicated by their morphological, cytochemical, and immunologic similarity to the patients' leukemic cells. Phenotypically, both cell lines appear to be arrested in a transitional stage of development between pre-B and B cells and express surface antigens usually found on normal and fresh leukemic cells of non-B-cell lineages.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1668-1676 ◽  
Author(s):  
Marina Konopleva ◽  
Adel Mikhail ◽  
Zeev Estrov ◽  
Shourong Zhao ◽  
David Harris ◽  
...  

Abstract The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34+ cells. Normal promyelocytes (CD34−33+ and CD34−13+) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v28.6%; P = .01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P < .001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P < .05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P < .005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P < .001) and gender (P = .03). Results confirm the reported expression of leptin receptor in normal CD34+ cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1668-1676 ◽  
Author(s):  
Marina Konopleva ◽  
Adel Mikhail ◽  
Zeev Estrov ◽  
Shourong Zhao ◽  
David Harris ◽  
...  

The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34+ cells. Normal promyelocytes (CD34−33+ and CD34−13+) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v28.6%; P = .01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P < .001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P < .05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P < .005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P < .001) and gender (P = .03). Results confirm the reported expression of leptin receptor in normal CD34+ cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.


Sign in / Sign up

Export Citation Format

Share Document