scholarly journals The Effect of Furanocoumarin Derivatives on Induction of Apoptosis and Multidrug Resistance in Human Leukemic Cells

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1824 ◽  
Author(s):  
Tomasz Kubrak ◽  
Marcin Czop ◽  
Przemysław Kołodziej ◽  
Marta Ziaja-Sołtys ◽  
Jacek Bogucki ◽  
...  

Background: The insensitivity of cancer cells to therapeutic agents is considered to be the main cause of failure of therapy and mortality of patients with cancer. A particularly important problem in these patients is the phenomenon of multidrug resistance, consisting of abnormal, elevated expression of transport proteins (ABC family). The aim of this research included determination of IC50 values of selected furanocoumarins in the presence and absence of mitoxantrone in leukemia cells and analysis of changes in apoptosis using anexinV/IP and Casp3/IP after 24 h exposure of cell lines to selected coumarins in the presence and absence of mitoxantrone in IC50 concentrations. Methods: Research was conducted on 3 cell lines derived from the human hematopoietic system: HL-60, HL-60/MX1 and HL-60/MX2. After exposure to coumarin compounds, cells were subjected to cytometric analysis to determine the induction of apoptosis by two methods: the Annexin V test with propidium iodide and the PhiPhiLux-G1D2 reagent containing caspase 3 antibodies. Results: All of the furanocoumarin derivatives studied were found to induce apoptosis in leukemia cell lines. Conclusions: Our results clearly show that the furanocoumarin derivatives are therapeutic substances with antitumor activity inducing apoptosis in human leukemia cells with phenotypes of resistance.

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2845 ◽  
Author(s):  
Gábor Szebeni ◽  
József Balog ◽  
András Demjén ◽  
Róbert Alföldi ◽  
Vanessza Végi ◽  
...  

Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-b]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-b]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential. Optimization through structure activity relationship resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 nM, and 32.25 nM on HL-60, MOLT-4, MV-4-11 cells, respectively. Human primary fibroblasts were much less sensitive in the applied concentration range. Both monolayer or spheroid cultures of murine 4T1 and human MCF7 breast cancer cells were less sensitive to treatment with 1.5–10.8 μM IC50 values. Flow cytometry confirmed the absence of necrosis and revealed 60% late apoptotic population for MV-4-11, and 50% early apoptotic population for HL-60. MOLT-4 cells showed only about 30% of total apoptotic population. Toxicogenomic study of DU385 on the most sensitive MV-4-11 cells revealed altered expression of sixteen genes as early (6 h), midterm (12 h), and late response (24 h) genes upon treatment. Changes in ALOX5AP, TXN, and SOD1 expression suggested that DU385 causes oxidative stress, which was confirmed by depletion of cellular glutathione and mitochondrial membrane depolarization induction. Imidazo[1,2-b]pyrazole-7-carboxamides reported herein induced apoptosis in human leukemia cells at nanomolar concentrations.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Tomasz Kubrak ◽  
Anna Bogucka-Kocka ◽  
Łukasz Komsta ◽  
Daniel Załuski ◽  
Jacek Bogucki ◽  
...  

The presence of multidrug resistance (MDR) in tumor cells is considered as the major cause of failure of cancer chemotherapy. The mechanism responsible for the phenomenon of multidrug resistance is explained, among others, as overexpression of membrane transporters primarily from the ABC family which actively remove cytostatics from the tumor cell. The effect of 20 coumarin derivatives on the cytotoxicity and expression ofMDR1,MRP1,BCRP, andLRPgenes (encoding proteins responsible for multidrug resistance) in cancer cells was analyzed in the study. The aim of this research included determination of IC10 and IC50 values of selected coumarin derivatives in the presence and absence of mitoxantrone in leukemia cells and analysis of changes in the expression of genes involved in multidrug resistance:MDR1,MRP,LRP, andBCRPafter 24-hour exposure of the investigated cell lines to selected coumarins in the presence and absence of mitoxantrone in IC10 and IC50 concentrations. The designed research was conducted on 5 cell lines derived from the human hematopoietic system: CCRF/CEM, CEM/C1, HL-60, HL-60/MX1, and HL-60/MX2. Cell lines CEM/C1, HL-60/MX1, and HL-60/MX2 exhibit a multidrug resistance phenotype.


2003 ◽  
Vol 66 (8) ◽  
pp. 1124-1127 ◽  
Author(s):  
Kenji Matsumoto ◽  
Yukihiro Akao ◽  
Emi Kobayashi ◽  
Kenji Ohguchi ◽  
Tetsuro Ito ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1366-1366 ◽  
Author(s):  
Miki Kobayashi ◽  
Satoki Nakamura ◽  
Takaaki Ono ◽  
Yuya Sugimoto ◽  
Naohi Sahara ◽  
...  

Abstract Background: The conserved Aurora family kinases, a family of mitotic serine/threonine kinases, have three members (Aurora-A, -B and -C) in mammalian cells. The Aurora kinases are involved in the regulation of cell cycle progression, and alterations in their expression have been shown to associate with cell malignant transformation. Aurora A localizes to the centrosomes during anaphase, and it is required for mitotic entry. Aurora B regulates the formation of a stable bipolar spindle-kinetochore attachment in mitosis. The function of Aurora-C in mammalian cells has not been studied extensively. In this study, we investigated that human leukemia cells expressed all 3 Aurora kinases at both protein and mRNA level, and the mechanisms of cell cycle regulation by knock down of Aurora C in leukemia cells. Methods: In this study, we used the 7 human leukemia cell lines, K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells. The expression levels of mRNA and proteins of Aurora kinases were evaluated by RT-PCR and western blot. The analysis of proliferation and cell cycle were performed by MTT assay and FCM, respectively. Results: The mRNA of Aurora-A and Aurora-B are highly expressed in human leukemia cell lines (K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells), while the mRNA of Aurora C is not only expressed highly in all cells. In contrast, an increase in the protein level of the 3 kinases was found in all cell lines. These observations suggested posttranscriptional mechanisms, which modulate the expression of Aurora C. In cell cycle analysis by flow cytometory, the knock down of Aurora C by siRNA induced G0/G1 arrest and apoptosis in leukemia cells, and increased the protein levels of p27Kip1 and decreased Skp2 by western blot. In MTT assay, it was revealed that the growth inhibition of leukemia cells transfected with siRNA Aurora C compared with leukemia cells untransfected with siRNA Aurora C. Moreover, We showed that Aurora C was associated with Survivin and directly bound to Survivin by immunoprecipitation and western blot. Conclusion: We found that human leukemia cells expressed all 3 members of the Aurora kinase family. These results suggest that the Aurora kinases may play a relevant role in leukemia cells. Among these Aurora kinases, Aurora C interacted with Survivin and prevented apoptosis of leukemia cells, and induced cell cycle progression. Our results showed that Aurora-C may serve as a key regulator in cell division and survival. These results suggest that the Aurora C kinase may play an important role in leukemia cells, and may represent a target for leukemia therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4420-4420
Author(s):  
Ikuo Murohashi ◽  
Noriko Ihara

Abstract Abstract 4420 Normal hematopoietic stem cells have been shown to be maintained through interaction with their environmental niches, such as osteoblastic and endothelial ones. The growth of leukemic cells has been shown to be stimulated by environmental niches (paracrine growth) or by cell-to-cell interaction or excreted factors of leukemic cells (autocrine growth). The growth of myeloid (MO7-E and HL-60) and lymphoid (Raji, U-266, Daudi and RPMI-1788) leukemia cell lines cultured at various cell densities in serum free medium (Sigma H 4281) with 1% BSA was evaluated. The cells cultured at higher cell densities (cultured cell densities ≥a 105/ml) showed logarithmic linear increases in cell number, whereas those at lower cell densities (cultured cell densities □… 104/ml) ceased increasing cell number. Supernatants of myeloid leukemia cells stimulated the growth of autologous clonogenic cells, but not those of lymphoid leukemia cells. Neutralizing antibodies (Abs) against various hematopoietic growth factors failed to inhibit cell growth except for anti-VEGF, which significantly decreased HL-60 leukemia cell growth. To clarify the nature of the cultured cell density on the growth of leukemia cells, leukemia cells were cultured at higher cell density (group H, cultured cell densities of 106/ml) or at lower cell density (group L, cultured cell densities 104/ml). After culture of 3-, 6-, 10-, and 24-hr, cells were serially harvested and total cellular RNA was extracted. Gene transcript levels were determined by using Real-Time PCR. Gene transcripts examined in the present study were as follows: polycomb (Bmi1), Hox (HOXA7, HOXA9, HOXB2, HOXB4, Meis 1), Caudal-related (CDX2, 4), Mef2c, c-Myb, Wnt (Wnt 3a, Wnt 5a, β-Catenin, β-Catenin, N-Cadherin), Notch (Notch-1, -2, -3 and Jagged-1, -2), CKI (p14, p15, p16, p18, p21, p27, p57), growth factor (VEGF, IGF-1, -2, Ang-1, -2, SDF-1), growth factor receptor (Flt-1, KDR, neurophilin-1, IGF-1R, Tie-1, -2, CXCR4), and growth related (c-Myc, CyclinD1, Foxo3a) genes. p18 and p21 gene expression was higher in group L compared with group H in two and all five groups, respectively. In contrast, p14 gene expression was higher in group H compared with group L. Any of the p15, p16, p27 and p57 genes was deleted. VEGF gene expression levels at 1-3- hr culture were higher in group H compared with group L. HOX, Meis 1 and Mef2c gene expression levels at 1- to 10- hr culture were higher in group H compared with group L. At 24-hr cultures, transcripts of myeloid and lymphoid cell lines for Bmi-1, Wnt-3a, and β-Catenin were higher, and those of lymphoid cell lines for Notch 1, 2, and 3 were higher in group H compared with group L. Taken together, our present results favor the conclusions that genes related to growth factors and transcription factors are sequentially and differentially expressed through cell-to-cell interaction and excreted autocrine growth factors of leukemia cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 99-102 ◽  
Author(s):  
C Largman ◽  
K Detmer ◽  
JC Corral ◽  
FM Hack ◽  
HJ Lawrence

The expression of the newly described human retinoic acid receptor alpha (RAR alpha) in six nonlymphoid and six lymphoid leukemia cell lines and nine freshly obtained samples of leukemia cells from patients with acute nonlymphoid leukemia was assessed by Northern blot analysis, using a full length cDNA clone of RAR alpha as probe. RAR alpha was expressed in all 12 cell lines and in all fresh leukemia samples as two major transcripts of 2.6 and 3.5 kb in size. Levels of RAR alpha expression and transcript sizes in retinoid-sensitive cells (such as HL60 or fresh promyelocytic leukemia cells) were not different from those in other samples. Moreover, expression of RAR alpha was not significantly modulated by exposure to cis-retinoic acid (cisRA) in either cisRA-responsive or unresponsive cells. By using a 3′ fragment of the RAR alpha gene as a probe, we confirmed that the transcripts visualized did not represent the homologous RAR beta gene. RAR alpha appears to be expressed in most human leukemia cells regardless of the type of biologic response to retinoic acid.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Abstract Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Sign in / Sign up

Export Citation Format

Share Document