scholarly journals Abnormalities of the long arm of chromosome 6 in childhood acute lymphoblastic leukemia

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1626-1630 ◽  
Author(s):  
Y Hayashi ◽  
SC Raimondi ◽  
AT Look ◽  
FG Behm ◽  
GR Kitchingman ◽  
...  

To determine the biologic significance of the structural rearrangements of the long arm of chromosome 6(6q) in acute lymphoblastic leukemia (ALL) at diagnosis, we studied 412 consecutive children whose leukemic cell chromosomes had been completely banded and identified 45 (11%) children with this abnormality. The 45 cases were divided into del(6q) only (n = 11), del(6q) and numerical abnormalities (n = 4), del(6q) and structural abnormalities (n = 23), and 6q translocations (n = 7). The breakpoints of del(6q) were subgrouped: del(6)(q15q21) in 11 cases, del(6) (q13q21) in six, del(6)(q21q23) in four, del(6)(q15) in four, del(6)(q15q23) in three, and other deletions in 10 cases. Notably, all these deletions encompassed the 6q21 band, suggesting that this might be the locus of a recessive tumor suppressor gene, the absence of which contributes to malignant transformation or proliferation. Among the seven children with 6q translocations, a previously unidentified nonrandom translocation, t(6;12)(q21;p13) was noted in two cases with an early pre-B immunophenotype. Clinical features and event-free survival were similar among children with or without 6q abnormalities. Overall, children with 6q abnormalities were less likely than those without the abnormality to have a pre-B immunophenotype (P = .03). T- cell immunophenotypes were equally represented in cases with or without 6q abnormalities. However, all four children with del(6q) and a 12p abnormality had early pre-B ALL and all three children with del(6q) and a 9p abnormality had a T-cell immunophenotype. The lack of specificity for a particular immunophenotype may imply that the gene or genes affected by 6q abnormalities are broadly active in the multistep process of lymphoid leukemogenesis. The relatively high frequency of microscopically visible del(6q) indicates the need for molecular studies to identify cases with submicroscopic deletions.

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1626-1630 ◽  
Author(s):  
Y Hayashi ◽  
SC Raimondi ◽  
AT Look ◽  
FG Behm ◽  
GR Kitchingman ◽  
...  

Abstract To determine the biologic significance of the structural rearrangements of the long arm of chromosome 6(6q) in acute lymphoblastic leukemia (ALL) at diagnosis, we studied 412 consecutive children whose leukemic cell chromosomes had been completely banded and identified 45 (11%) children with this abnormality. The 45 cases were divided into del(6q) only (n = 11), del(6q) and numerical abnormalities (n = 4), del(6q) and structural abnormalities (n = 23), and 6q translocations (n = 7). The breakpoints of del(6q) were subgrouped: del(6)(q15q21) in 11 cases, del(6) (q13q21) in six, del(6)(q21q23) in four, del(6)(q15) in four, del(6)(q15q23) in three, and other deletions in 10 cases. Notably, all these deletions encompassed the 6q21 band, suggesting that this might be the locus of a recessive tumor suppressor gene, the absence of which contributes to malignant transformation or proliferation. Among the seven children with 6q translocations, a previously unidentified nonrandom translocation, t(6;12)(q21;p13) was noted in two cases with an early pre-B immunophenotype. Clinical features and event-free survival were similar among children with or without 6q abnormalities. Overall, children with 6q abnormalities were less likely than those without the abnormality to have a pre-B immunophenotype (P = .03). T- cell immunophenotypes were equally represented in cases with or without 6q abnormalities. However, all four children with del(6q) and a 12p abnormality had early pre-B ALL and all three children with del(6q) and a 9p abnormality had a T-cell immunophenotype. The lack of specificity for a particular immunophenotype may imply that the gene or genes affected by 6q abnormalities are broadly active in the multistep process of lymphoid leukemogenesis. The relatively high frequency of microscopically visible del(6q) indicates the need for molecular studies to identify cases with submicroscopic deletions.


1988 ◽  
Vol 6 (1) ◽  
pp. 56-61 ◽  
Author(s):  
C H Pui ◽  
D L Williams ◽  
P K Roberson ◽  
S C Raimondi ◽  
F G Behm ◽  
...  

To correlate leukemic cell karyotype with immunophenotype, we studied 364 children with acute lymphoblastic leukemia (ALL). A prognostically favorable cytogenetic feature, hyperdiploidy greater than 50 chromosomes, was found in 33% of cases classified as common ALL antigen positive (CALLA+) early pre-B (common) ALL, in contrast to 18% of pre-B cases (P = .012), 5% of T cell cases (P less than .001), and none of the B cell cases (P less than .001) or cases of CALLA negative (CALLA-) early pre-B ALL (P = .002). The frequency of translocations, an adverse cytogenetic feature, was significantly lower in CALLA+ early pre-B ALL cases (35%) than in B cell (100%; P less than .0001), pre-B (59%; P less than .001), or CALLA- early pre-B (62%; P = .016) cases. Thus, patterns of chromosomal change differ widely among the major immunophenotypic groups of ALL and may account for reported differences in responsiveness to treatment.


1999 ◽  
Vol 17 (1) ◽  
pp. 191-191 ◽  
Author(s):  
Jeffrey E. Rubnitz ◽  
Bruce M. Camitta ◽  
Hazem Mahmoud ◽  
Susana C. Raimondi ◽  
Andrew J. Carroll ◽  
...  

PURPOSE: To determine the molecular characteristics, clinical features, and treatment outcomes of children with acute lymphoblastic leukemia (ALL) and the t(11;19)(q23;p13.3) translocation. PATIENTS AND METHODS: A retrospective analysis of leukemic cell karyotypes obtained from patients with new diagnoses of ALL who were treated at St. Jude Children's Research Hospital or by the Pediatric Oncology Group was performed to identify cases with the t(11;19)(q23;p13.3) translocation. Molecular analyses were performed on these cases to determine the status of the MLL gene and the presence of the MLL-ENL fusion transcript. RESULTS: Among 3,578 patients with ALL and successful cytogenetic analysis, we identified 35 patients with the t(11;19)(q23;p13.3) translocation: 13 infants and 11 older children had B-precursor leukemia, whereas 11 patients had a T-cell phenotype. Although all of the cases examined had MLL rearrangements and MLL-ENL fusion transcripts, outcome varied according to age and immunophenotype. Among B-precursor cases, only two of the 13 infants remain in complete remission, compared with six of the 11 older children. Most strikingly, no relapses have occurred among B-precursor patients 1 to 9 years of age or among T-cell patients. CONCLUSION: Although MLL gene rearrangements are generally associated with a dismal outcome in ALL, two distinct subsets with MLL-ENL fusions have an excellent prognosis. Our results suggest that patients with this genetic abnormality who have T-cell ALL or are 1 to 9 years of age should not be considered candidates for hematopoietic stem-cell transplantation during their first remission.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2858-2866 ◽  
Author(s):  
AN Goldfarb ◽  
S Goueli ◽  
D Mickelson ◽  
JM Greenberg

SCL/tal is a putative oncogene originally identified through its involvement in the translocation t(1;14)(p32;q11) present in the leukemic cell line DU.528. Subsequent studies have shown an upstream deletion activating expression of SCL/tal to be one of the most common genetic lesions in T-cell acute lymphoblastic leukemia (T-ALL). The cDNA sequence of SCL/tal encodes a basic helix-loop-helix (bHLH) protein with regions of marked homology to lyl-1 and tal-2, two other bHLH proteins involved in T-ALL chromosomal translocations. The bHLH motif suggests that the SCL/tal product localizes to the nucleus, binds to specific DNA sequences, and regulates transcription of a specific array of target genes. Our studies directly identify the SCL/tal product as a 42-Kd phosphoprotein that efficiently localizes to the nucleus. Deletion mutagenesis has allowed identification of a region critical for nuclear localization, a region that corresponds to the DNA- binding basic domain within the bHLH motif. Because this domain is shared by lyl-1 and tal-2, these latter putative T-cell oncoproteins probably use a nuclear localization mechanism identical to that of SCL/tal.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
JM Cayuela ◽  
A Madani ◽  
L Sanhes ◽  
MH Stern ◽  
F Sigaux

No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5′ to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.


2007 ◽  
Vol 25 (7) ◽  
pp. 813-819 ◽  
Author(s):  
Elly Barry ◽  
Daniel J. DeAngelo ◽  
Donna Neuberg ◽  
Kristen Stevenson ◽  
Mignon L. Loh ◽  
...  

Purpose Historically, adolescents with acute lymphoblastic leukemia (ALL) have had inferior outcomes when compared with younger children. We report the outcome of adolescents treated on Dana-Farber Cancer Institute (DFCI; Boston, MA) ALL Consortium Protocols conducted between 1991 and 2000. Patients and Methods A total of 844 patients aged 1 to 18 years, with newly diagnosed ALL were enrolled onto two consecutive DFCI-ALL Consortium Protocols. We compared outcomes in three age groups: children aged 1 to 10 years (n = 685), young adolescents aged 10 to 15 years (n = 108), and older adolescents aged 15 to 18 years (n = 51). Results With a median follow-up of 6.5 years, the 5-year event-free survival (EFS) for those aged 1 to 10 years was 85% (SE, 1%), compared with 77% (SE, 4%) for those aged 10 to 15 years, and 78% (SE, 6%) for those aged 15 to 18 years (P = .09). Adolescents were more likely to present with T-cell phenotype (P < .001) and less likely to have the TEL-AML1 fusion (P = .05). The incidence of pancreatitis and thromboembolic complications, but not asparaginase allergy, was higher in patients ≥ 10 years of age compared with those younger than 10 years. However, there was no difference in the rate of treatment-related complications between the 10- to 15-year and 15- to 18-year age groups. Conclusion Adolescents were more likely to present at diagnosis with biologically higher risk disease (T-cell phenotype and absence of the TEL-AML1 fusion) and more likely to experience treatment-related complications than younger children. However, the 5-year EFS for older adolescents was 78% ± 6%, which is superior to published outcomes for similarly aged patients treated with other pediatric and adult ALL regimens. Based on this experience, we currently are piloting our regimen in patients aged 18 to 50 years.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2126-2126 ◽  
Author(s):  
Shuangyou Liu ◽  
Biping Deng ◽  
Yuehui Lin ◽  
Zhichao Yin ◽  
Jing Pan ◽  
...  

Abstract With traditional therapies, the prognosis of relapsed acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is extremely poor. Chimeric antigen receptor (CAR) T cell therapy targeting at CD19 has demonstrated a significant efficacy on refractory/relapsed (r/r) B-ALL, but single-target CART could not maintain a long-term remission. Recently, CD22-CART has also shown an exciting result in r/r B-ALL. Here we sequentially applied CD19- and CD22-specific CART cells to treat relapsed B-ALL post-HSCT and observed the therapeutic effect. From June 30,2017 through May 31,2018, twenty-four B-ALL patients (pts) relapsing after allo-HSCT with both antigens CD19 and CD22 expression on blasts were enrolled, the median age was 24 (2.3-55) years. Seventeen pts had hematologic relapse, 6 with both bone marrow and extramedullary (EM) involvements and 1 with EM disease (EMD) only. Fourteen pts had failed to previous therapies including chemotherapy, donor lymphocyte infusion, interferon and even murinized CD19-CART in other hospitals. Recipient-derived donor T cells were collected for producing CAR-T cells, which were transfected by a lentiviral vector encoding the CAR composed of CD3ζ and 4-1BB. Eighteen pts were initially infused with murinized CD19-CART, then humanized CD22-CART; while 6 pts (5 failed to prior murinized CD19-CART and 1 had bright CD22-expression) were initially infused with humanized CD22-CART, then humanized CD19-CART. The time interval between two infusions was 1.5-6 months based on patients' clinical conditions. The average dose of infused CAR T cells was 1.4×105/kg (0.4-9.2×105/kg) for CD19 and 1.9×105/kg (0.55-6.6×105/kg) for CD22. All patients received fludarabine with or without cyclophosphamide prior to each infusion, some pts accepted additional chemo drugs to reduce the disease burden. Treatment effects were evaluated on day 30 and then monthly after each CART, minimal residual disease (MRD) was detected by flow cytometry (FCM) and quantitative PCR for fusion genes, EMD was examined by PET-CT, CT or MRI. Sixteen patients finished sequential CD19- and CD22-CART therapies. Three cases could not undergo the second round of CART infusion (1 died, 1 gave up and 1 developed extensive chronic graft-versus-host disease (GVHD)). The rest of 5 pts are waiting for the second CART. After first T-cell infusion, 20/24 (83.3%) pts achieved complete remission (CR) or CR with incomplete count recovery (CRi), MRD-negative was 100% in CR or CRi pts, 3 (12.5%) cases with multiple EMD obtained partial remission (PR), and 1 (4.2%) died of severe cytokine release syndrome (CRS) and severe acute hepatic GVHD. Sixteen patients (15 CR and 1 PR) underwent the second CART therapy. Before second infusion, 3/15 pts in CR became MRD+ and others remained MRD-. On day 30 post-infusion, 1 of 3 MRD+ pts turned to MRD-, 1 maintained MRD+ ( BCR/ABL+) and 1 had no response then hematologic relapse later. The PR patient still had not obtained CR and then disease progressed. As of 31 May 2018, at a median follow-up of 6.5 (4-10) months, among 16 pts who received sequential CD-19 and CD-22 CART therapies, 1 had disease progression, 2 presented with hematological relapse and 2 with BCR/ABL+ only, the overall survival (OS) rate was 100% (16/16), disease-free survival (DFS) was 81.3% (13/16) and MRD-free survival was 68.8% (11/16). CRS occurred in 91.7% (22/24) pts in the first round of T-cell infusion, most of them were mild-moderate (grade I-II), merely 2 pts experienced severe CRS (grade III-IV). The second CART only caused grade I or no CRS since the leukemia burden was very low. GVHD induced by CART therapy was a major adverse event in these post-HSCT patients. After the first CART, 7/24 (29.2%) pts experienced GVHD, of them, 4 presented with mild skin GVHD, 2 with severe hepatic GVHD (1 recovered and 1 died), and 1 developed extensive chronic GVHD. No severe GVHD occurred in the second infusion. Our preliminary clinical study showed that for B-ALL patients who relapsed after allo-HSCT, single CD19- or CD22- CART infusion resulted in a high CR rate of 83.3%, sequentially combined CD19- and CD22-CART therapies significantly improved treatment outcome with the rate of OS, DFS and MRD-free survival being 100%, 81.3% and 68.8%, respectively, at a median follow-up of 6.5 months. The effect of CART on multiple EMD was not good and CART induced GVHD needs to be cautious. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Runxia Gu ◽  
Fang Liu ◽  
Dehui Zou ◽  
Yingxi Xu ◽  
Yang Lu ◽  
...  

Abstract Background Recent evidence suggests that resistance to CD19 chimeric antigen receptor (CAR)-modified T cell therapy may be due to the presence of CD19 isoforms that lose binding to the single-chain variable fragment (scFv) in current use. As such, further investigation of CARs recognize different epitopes of CD19 antigen may be necessary. Methods We generated a new CD19 CAR T (HI19α-4-1BB-ζ CAR T, or CNCT19) that includes an scFv that interacts with an epitope of the human CD19 antigen that can be distinguished from that recognized by the current FMC63 clone. A pilot study was undertaken to assess the safety and feasibility of CNCT19-based therapy in both pediatric and adult patients with relapsed/refractory acute lymphoblastic leukemia (R/R B-ALL). Results Data from our study suggested that 90% of the 20 patients treated with infusions of CNCT19 cells reached complete remission or complete remission with incomplete count recovery (CR/CRi) within 28 days. The CR/CRi rate was 82% when we took into account the fully enrolled 22 patients in an intention-to-treat analysis. Of note, extramedullary leukemia disease of two relapsed patients disappeared completely after CNCT19 cell infusion. After a median follow-up of 10.09 months (range, 0.49–24.02 months), the median overall survival and relapse-free survival for the 20 patients treated with CNCT19 cells was 12.91 months (95% confidence interval [CI], 7.74–18.08 months) and 6.93 months (95% CI, 3.13–10.73 months), respectively. Differences with respect to immune profiles associated with a long-term response following CAR T cell therapy were also addressed. Our results revealed that a relatively low percentage of CD8+ naïve T cells was an independent factor associated with a shorter period of relapse-free survival (p = 0.012, 95% CI, 0.017–0.601). Conclusions The results presented in this study indicate that CNCT19 cells have potent anti-leukemic activities in patients with R/R B-ALL. Furthermore, our findings suggest that the percentage of CD8+ naïve T cells may be a useful biomarker to predict the long-term prognosis for patients undergoing CAR T cell therapy. Trial registration ClinicalTrials.gov: NCT02975687; registered 29 November, 2016. https://clinicaltrials.gov/ct2/keydates/NCT02975687


1993 ◽  
Vol 11 (7) ◽  
pp. 1361-1367 ◽  
Author(s):  
C H Pui ◽  
S C Raimondi ◽  
M J Borowitz ◽  
V J Land ◽  
F G Behm ◽  
...  

PURPOSE Immunophenotypes and karyotypes of leukemic cells were analyzed in a large series of Down syndrome patients with acute lymphoblastic leukemia (ALL) to examine the frequency of adverse prognostic features in comparison with other patients with ALL. PATIENTS AND METHODS Presenting features and leukemic cell characteristics were compared for 76 patients with Down syndrome and 4,733 other patients with newly diagnosed ALL treated on protocols of the Pediatric Oncology Group (POG) and St Jude Children's Research Hospital (SJCRH). Treatment outcome was analyzed for the patients with non-T-cell disease enrolled on a single trial, for whom adequate follow-up data were available. RESULTS Down syndrome patients had lower platelet counts (P < .01) and were less likely to have an anterior mediastinal mass (P < .01) or CNS leukemia (P = .01). They were significantly more likely to have the pre-B immunophenotype (49% v 25.5%, P < .01) and less likely to have T-cell ALL (5.5% v 16%, P = .01). There was a notable absence among patients with Down syndrome of the t(4;11), t(1;19), and t(9;22), which are chromosomal translocations associated with an adverse prognosis in ALL. Treatment outcome did not differ significantly between patients with Down syndrome and the other children with non-T-cell ALL (P = .21); a third of the treatment failures in the former group resulted from treatment-related toxicities. CONCLUSION Children with Down syndrome and ALL had a low frequency of adverse clinicobiologic features at diagnosis. However, these findings did not translate into a superior outcome, apparently because of treatment-related toxicity in this group. Future trials should focus on pharmacokinetics and other strategies to reduce toxicity in these compromised patients.


Sign in / Sign up

Export Citation Format

Share Document