scholarly journals Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines

Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 617-624 ◽  
Author(s):  
T Torigoe ◽  
R O'Connor ◽  
D Santoli ◽  
JC Reed

Abstract The lymphokine interleukin-3 (IL-3) promotes the growth and survival of immature hematopoietic cells. Previous studies have shown that IL-3 induces rapid increases in protein-tyrosine kinase (PTK) activity in IL- 3--dependent cells. Unlike some other hematopoietic growth factor receptors (eg, c-fms and c-kit), however, the known subunits of the IL- 3 receptor (IL-3R) lack intrinsic kinase activity. Recently, it was reported that the IL-2R (whose p75 beta-subunit shares sequence homology with a known murine IL-3R subunit and a common beta-subunit of the human IL-3R and granulocyte-macrophage colony-stimulating factor [GM-CSF] receptors) can physically associate with and regulate the activity of the SRC-family PTK, p56-LCK. Because most IL-3--dependent cells contain p53/56-LYN, but not p56-LCK, we explored the effects of IL-3 on the activities of LYN and other SRC-like PTKs in two human leukemic cell lines, AML-193 and TALL-101, which are phenotypically myeloid, and whose in vitro growth is dependent on IL-3. These cells expressed four of the eight known SRC-family proto-oncogenes: lyn, fyn, yes, and hck. When these factor-dependent leukemic cell lines were deprived of lymphokine to achieve cellular quiescence and then restimulated with IL-3, rapid increases (detectable within 1 minute and maximal by 10 minutes) were observed in the activity of the p53/56-LYN kinase, as assessed by in vitro kinase assays. In contrast, no alteration in the activities of other SRC-family PTKs present in these cells was detected after restimulation with IL-3 under the same conditions. This effect of IL-3 reflected an increase in the specific activity of the LYN kinase, because levels of the 53-Kd and 56-Kd LYN proteins were unaltered by IL-3 stimulation, as assessed by immunoblotting. Furthermore, the magnitude of these inducible increases in LYN kinase activity was dependent on the concentration of IL-3, and correlated with IL-3--induced proliferation. The IL-3--induced upregulation of LYN kinase activity may be mediated by the 120-Kd common subunit of the human IL-3 and GM-CSF receptors, because GM-CSF also stimulated marked increases in the activity of the LYN kinase, whereas granulocyte-CSF (G-CSF) did not, despite inducing cellular proliferation. These observations provide the first example of an IL-3-- regulable PTK, and strongly suggest that the p53/56-LYN kinase participates in early IL-3--initiated signalling events, at least in some human leukemic cell lines.

Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 617-624 ◽  
Author(s):  
T Torigoe ◽  
R O'Connor ◽  
D Santoli ◽  
JC Reed

The lymphokine interleukin-3 (IL-3) promotes the growth and survival of immature hematopoietic cells. Previous studies have shown that IL-3 induces rapid increases in protein-tyrosine kinase (PTK) activity in IL- 3--dependent cells. Unlike some other hematopoietic growth factor receptors (eg, c-fms and c-kit), however, the known subunits of the IL- 3 receptor (IL-3R) lack intrinsic kinase activity. Recently, it was reported that the IL-2R (whose p75 beta-subunit shares sequence homology with a known murine IL-3R subunit and a common beta-subunit of the human IL-3R and granulocyte-macrophage colony-stimulating factor [GM-CSF] receptors) can physically associate with and regulate the activity of the SRC-family PTK, p56-LCK. Because most IL-3--dependent cells contain p53/56-LYN, but not p56-LCK, we explored the effects of IL-3 on the activities of LYN and other SRC-like PTKs in two human leukemic cell lines, AML-193 and TALL-101, which are phenotypically myeloid, and whose in vitro growth is dependent on IL-3. These cells expressed four of the eight known SRC-family proto-oncogenes: lyn, fyn, yes, and hck. When these factor-dependent leukemic cell lines were deprived of lymphokine to achieve cellular quiescence and then restimulated with IL-3, rapid increases (detectable within 1 minute and maximal by 10 minutes) were observed in the activity of the p53/56-LYN kinase, as assessed by in vitro kinase assays. In contrast, no alteration in the activities of other SRC-family PTKs present in these cells was detected after restimulation with IL-3 under the same conditions. This effect of IL-3 reflected an increase in the specific activity of the LYN kinase, because levels of the 53-Kd and 56-Kd LYN proteins were unaltered by IL-3 stimulation, as assessed by immunoblotting. Furthermore, the magnitude of these inducible increases in LYN kinase activity was dependent on the concentration of IL-3, and correlated with IL-3--induced proliferation. The IL-3--induced upregulation of LYN kinase activity may be mediated by the 120-Kd common subunit of the human IL-3 and GM-CSF receptors, because GM-CSF also stimulated marked increases in the activity of the LYN kinase, whereas granulocyte-CSF (G-CSF) did not, despite inducing cellular proliferation. These observations provide the first example of an IL-3-- regulable PTK, and strongly suggest that the p53/56-LYN kinase participates in early IL-3--initiated signalling events, at least in some human leukemic cell lines.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2941-2949 ◽  
Author(s):  
Kevin W. H. Yee ◽  
Anne Marie O'Farrell ◽  
Beverly D. Smolich ◽  
Julie M. Cherrington ◽  
Gerald McMahon ◽  
...  

Internal tandem duplication (ITD) in the juxtamembrane portion of Fms-like tyrosine kinase 3 (FLT3), a type III receptor tyrosine kinase (RTK), is the most common molecular defect associated with acute myeloid leukemia (AML). The high prevalence of this activating mutation makes it a potential target for molecularly based therapy. Indolinone tyrosine kinase inhibitors have known activity against KIT, another member of the type III RTK family. Given the conserved homology between members of this family, we postulated that the activity of some KIT inhibitors would extend to FLT3. We used various leukemic cell lines (BaF3, MV 4-11, RS 4;11) to test the activity of indolinone compounds against the FLT3 kinase activity of both wild-type (WT) and ITD isoforms. Both SU5416 and SU5614 were capable of inhibiting autophosphorylation of ITD and WT FLT3 (SU5416 concentration that inhibits 50% [IC50], 100 nM; and SU5614 IC50 10 nM). FLT3-dependent activation of the downstream signaling proteins mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) was also inhibited by treatment in the same concentration ranges. FLT3 inhibition by SU5416 and SU5614 resulted in reduced proliferation (IC50, 250 nM and 100 nM, respectively) and induction of apoptosis of FLT3 ITD-positive leukemic cell lines. Treatment of these cells with an alternative growth factor (granulocyte-macrophage colony-stimulating factor [GM-CSF]) restored MAPK signaling and cellular proliferation, demonstrating specificity of the observed inhibitory effects. We conclude that SU5416 and SU5614 are potent inhibitors of FLT3. Our finding that inhibition of FLT3 induces apoptosis of leukemic cells supports the feasibility of targeting FLT3 as a novel treatment strategy for AML.


2019 ◽  
Vol 18 (13) ◽  
pp. 1892-1899 ◽  
Author(s):  
Tanushree Pal ◽  
Asmita Sharda ◽  
Bharat Khade ◽  
C. Sinha Ramaa ◽  
Sanjay Gupta

Background: At present, ‘pharmaco-epigenomics’ constitutes the hope in cancer treatment owing to epigenetic deregulation- a reversible process and playing a role in malignancy. Objective: Chemotherapy has many limitations like host-tissue toxicity, drug resistance. Hence, it is imperative to unearth targets to better treat cancer. Here, we intend to repurpose a set of our previously synthesized difluorinated Propanediones (PR) as Histone lysine Methyltransferase inhibitors (HMTi). Methods: The cell lines of leukemic origin viz. histiocytic lymphoma (U937) and acute T-cell leukemia (JURKAT) were treated with PR-1 to 7 after docking studies with active pocket of HMT. The cell cycle analysis, in vitro methylation and cell proliferation assays were carried out to delineate their physiological role. Results: A small molecule PR-4, at 1 and 10µM, has shown to alter the methylation of histone H3 and H4 in both cell lines. Also, treatment shows an increase in G2/M population and a subsequent decrease in the G0/G1 population in U937. In JURKAT, an increase in both G2/M and S phase population was observed. The sub-G1 population showed a steady rise with increase in dose and prolonged time intervals in U937 and JURKAT cell lines. In SRB assay, the PR showed a cell growth of 42.6 and 53.4% comparable to adriamycin; 44.5 and 53.2% in U937 and JURKAT, respectively. The study suggests that PR-4 could emerge as a potential HMT inhibitor. Conclusion: The molecule PR-4 could be a lead in developing more histone lysine methyltransferases inhibitors with potential to be pro-apoptotic agents.


Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2438-2444 ◽  
Author(s):  
CK Ho ◽  
BR Ou ◽  
ML Hsu ◽  
SN Su ◽  
CH Yung ◽  
...  

Abstract Normal polymorphonuclear neutrophils (PMNs) constitutively secrete a mediator designated granulocyte-derived factor (GDF) that can enhance the uptake of 3H-thymidine (3- to 20-fold) by the molt-3, CTV-1, and K562 leukemic cell lines in a dose-dependent manner. GDF is heat labile (56 degrees C for 30 minutes) and acid labile (pH 2.0) and is sensitive to treatment with bacterial protease type IV. Our preliminary studies suggest that GDF is non-dialyzable (molecular weight cutoff, 12,000), binds to diethylaminoethyl (DEAE), and has an apparent molecular weight (mol wt) of about 40 Kd. Production of GDF is unaffected by treatment of PMN with activating agents (interferon gamma, OK432, phorbol ester, calcium ionophore, poly I:C) or metabolic inhibitors (actinomycin-D and cyclohexamide), suggesting that GDF is constitutively secreted. Despite the marked enhancement of 3H-thymidine uptake, cell number and the rate of DNA synthesis in GDF responsive cultures remain unchanged. In contrast, the clonogenic efficiency of the responsive cells is greatly increased in the presence of GDF. These phenomena occur in parallel to an amplification of the level of thymidine kinase activity in the sensitive cells. GDF is distinct from a panel of different lymphokines and monokines in antigenicity and biochemical and functional characteristics, and is possibly a novel cytokine that can alter the pattern of DNA synthesis and growth characteristics of certain hematopoietic cells. However, its biologic and physiologic significance remains to be determined.


Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
G Manfioletti ◽  
V Gattei ◽  
E Buratti ◽  
A Rustighi ◽  
A De Iuliis ◽  
...  

Proline-rich homeobox (Prh) is a novel human homeobox-containing gene recently isolated from the CD34+ cell line KG-1A, and whose expression appears mainly restricted to hematopoietic tissues. To define the pattern of Prh expression within the human hematopoietic system, we have analyzed its constitutive expression in purified cells obtained from normal hematopoietic tissues, its levels of transcription in a number of leukemia/lymphoma cell lines representing different lineages and stages of hematolymphopoietic differentiation, and its regulation during in vitro maturation of human leukemic cell lines. Prh transcripts were not detected in leukemic cells of T-lymphoid lineage, irrespective of their maturation stage, and in resting or activated normal T cells from peripheral blood and lymphoid tissues. In contrast, high levels of Prh expression were shown in cells representing early stages of B lymphoid maturation, being maintained up to the level of circulating and tissue mature B cells. Terminal B-cell differentiation appeared to be conversely associated with the deactivation of the gene, since preplasmacytic and plasmocytoma cell lines were found not to express Prh mRNA. Prh transcripts were also shown in human cell lines of early myelomonocytic, erythromegakaryocytic, and preosteoclast phenotypes. Prh expression was lost upon in vitro differentiation of leukemic cell lines into mature monocyte-macrophages and megakaryocytes, whereas it was maintained or upregulated after induction of maturation to granulocytes and osteoclasts. Accordingly, circulating normal monocytes did not display Prh mRNA, which was conversely detected at high levels in purified normal granulocytes. Our data, which show that the acquisition of the differentiated phenotype is associated to Prh downregulation in certain hematopoietic cells but not in others, also suggest that a dysregulated expression of this gene might contribute to the process of leukemogenesis within specific cell lineages.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117806 ◽  
Author(s):  
Hannes Neuwirt ◽  
Elisabeth Wabnig ◽  
Clemens Feistritzer ◽  
Iris E. Eder ◽  
Christina Salvador ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 461-469 ◽  
Author(s):  
Farzana Sayani ◽  
Felix A. Montero-Julian ◽  
Valerie Ranchin ◽  
Jay M. Prevost ◽  
Sophie Flavetta ◽  
...  

On the basis of the finding of alternatively spliced mRNAs, the -subunit of the receptor for GM-CSF is thought to exist in both a membrane spanning (tmGMR) and a soluble form (solGMR). However, only limited data has been available to support that the solGMR protein product exists in vivo. We hypothesized that hematopoietic cells bearing tmGMR would have the potential to also produce solGMR. To test this hypothesis we examined media conditioned by candidate cells using functional, biochemical, and immunologic means. Three human leukemic cell lines that express tmGMR (HL60, U937, THP1) were shown to secrete GM-CSF binding activity and a solGMR-specific band by Western blot, whereas a tmGMR-negative cell line (K562) did not. By the same analyses, leukapheresis products collected for autologous and allogeneic stem cell transplants and media conditioned by freshly isolated human neutrophils also contained solGMR. The solGMR protein in vivo displayed the same dissociation constant (Kd = 2-5 nmol) as that of recombinant solGMR. A human solGMR ELISA was developed that confirmed the presence of solGMR in supernatant conditioned by the tmGMR-positive leukemic cell lines, hematopoietic progenitor cells, and neutrophils. Furthermore, the ELISA demonstrated a steady state level of solGMR in normal human plasma (36 ± 17 pmol) and provided data suggesting that plasma solGMR levels can be elevated in acute myeloid leukemias.


2017 ◽  
Vol 655 (1) ◽  
pp. 275-286
Author(s):  
Nicoleta Radu ◽  
Viviana Roman ◽  
Marinela Bostan ◽  
Mariana Voicescu ◽  
Ciprian Tanasescu

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ivanka Kraicheva ◽  
Georgi Momekov ◽  
Rositsa Mihaylova ◽  
Margarita Topashka-Ancheva ◽  
Ivelina Tsacheva ◽  
...  

Two novel polyphosphoesters containing anthracene- and furan-derived aminophosphonate moieties, namely, poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s P-12 and P-13, were synthesized through an addition of poly(oxyethylene H-phosphonate) to 9-anthrylidene-furfurylamine and characterized. The novel polyphosphoester P-12 and a series of previously described anthracene-derived compounds including Schiff bases S-1 and S-2, α-aminophosphonates A-3–A-6, bis-aminophosphonate B-6, two enantiomers A-5a and A-5b, and polyphosphoesters P-8–P-11 containing aminophosphonate units were screened for antitumor activity against a panel of human leukemic cell lines, using cisplatin as a reference cytotoxic agent. As concluded from the cytotoxicity assays, both precursors S-1 and S-2 presented similar cytotoxicity profiles that are cisplatin-like only in the REH cell line. Leader compound of the α-aminophosphonates is A-4 with cell death-inducing properties fully equaling those of the referent drug in all of the screened leukemic cell lines with the only exception being the AML histological subtype HL-60. Some of the polymeric analogues elicited moderate (P-10 and P-12) to low (P-11) cytotoxic activity, whereas the polyphosphoesters P-8 and P-9 produced in vitro antitumor effects largely surpassing cisplatin’s. The compounds P-8, P-9, and A-4 could be potential new materials for anticancer therapeutic purposed.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4493-4493 ◽  
Author(s):  
Yoshihiro Hatta ◽  
Minoru Saiki ◽  
Yuko Enomoto ◽  
Shin Aizawa ◽  
Umihiko Sawada ◽  
...  

Abstract Troglitazone and pioglitazone are one of thiazolidinediones that are high affinity ligand for the nuclear receptor called peroxisome proliferator-activated receptor gamma (PPAR-γ). Troglitazone is a potent inhibitor of clonogenic growth of acute myeloid leukemia cells when combined with a retinoid. However, the effect of pioglitazone to neoplastic cells and normal hematopoietic cells has not been studied yet. Adult T-cell leukemia (ATL), prevalent in western Japan, is a highly aggressive malignancy of mature T lymphocyte. Therefore, we studied antitumor effect of pioglitazone against leukemic cells including ATL as well as normal hematopoietic cells. With 300 μM of pioglitazone, colony formation of ATL cell lines (MT1, MT2, F6T, OKM3T, and Su9T01) was completely inhibited. Colony formation of HUT102, another ATL cell line, was 12 % compared to untreated control. Clonogenic cells of other leukemic cell lines (K562, HL60, U937, HEL, CEM, and NALM1) was also inhibited to 0–30% of control. Colony formation of primary leukemic cells from 5 AML patients was decreased to 15 %. However, normal hematopoietic cells were weakly inhibited with 300 μM pioglitazone; 77 % of CFU-GM, 70 % of CFU-E, and 33 % of BFU-E survived. Cell cycle analysis showed that pioglitazone decreased the ratio of G2/M phase in HL60 cells, suggesting the inhibition of cell division. By Western blotting, PPAR-γ protein level was similar in all leukemic cells and normal bone marrow mononuclear cells. Taken together, pioglitazone effectively eliminate leukemic cells and could be used as an antitumor agent in vivo.


Sign in / Sign up

Export Citation Format

Share Document