scholarly journals Megakaryocyte growth and development factor ameliorates carboplatin- induced thrombocytopenia in mice

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 971-976 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
S Yin ◽  
S Swift ◽  
D Padilla ◽  
...  

Abstract Megakaryocyte growth and development factor (MGDF) administered intraperitoneally (IP) to mice causes a dose-dependent thrombocytosis accompanied by a decrease in mean platelet volume. MGDF increases the number of megakaryocytes in the bone marrow and spleen. MGDF does not affect the circulating number of leukocytes. Carboplatin, a chemotherapeutic agent that causes thrombocytopenia in humans, administered to mice as a single IP injection at a nonlethal dose causes a significant, but reversible thrombocytopenia. The carboplatin- induced thrombocytopenia is accompanied by an increase in circulating endogenous MGDF that precedes the return of circulating platelets to a normal level. MGDF mRNA is constitutively present in the liver. After carboplatin treatment, hepatic MGDF mRNA does not increase in concordance with circulating MGDF. Circulating soluble MGDF receptor levels (c-mpl) do not change significantly during the course of carboplatin-induced thrombocytopenia. MGDF injected IP once daily beginning 1 day after injection of carboplatin reverses carboplatin- induced thrombocytopenia in a dose-dependent fashion. The normalization of circulating platelet numbers in carboplatin plus MGDF-treated mice is accompanied by a normalization of megakaryocyte numbers in the bone marrow. In conclusion, MGDF, by increasing the number of marrow megakaryocytes and circulating platelets is an effective therapy for carboplatin-induced thrombocytopenia in mice.

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 971-976 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
S Yin ◽  
S Swift ◽  
D Padilla ◽  
...  

Megakaryocyte growth and development factor (MGDF) administered intraperitoneally (IP) to mice causes a dose-dependent thrombocytosis accompanied by a decrease in mean platelet volume. MGDF increases the number of megakaryocytes in the bone marrow and spleen. MGDF does not affect the circulating number of leukocytes. Carboplatin, a chemotherapeutic agent that causes thrombocytopenia in humans, administered to mice as a single IP injection at a nonlethal dose causes a significant, but reversible thrombocytopenia. The carboplatin- induced thrombocytopenia is accompanied by an increase in circulating endogenous MGDF that precedes the return of circulating platelets to a normal level. MGDF mRNA is constitutively present in the liver. After carboplatin treatment, hepatic MGDF mRNA does not increase in concordance with circulating MGDF. Circulating soluble MGDF receptor levels (c-mpl) do not change significantly during the course of carboplatin-induced thrombocytopenia. MGDF injected IP once daily beginning 1 day after injection of carboplatin reverses carboplatin- induced thrombocytopenia in a dose-dependent fashion. The normalization of circulating platelet numbers in carboplatin plus MGDF-treated mice is accompanied by a normalization of megakaryocyte numbers in the bone marrow. In conclusion, MGDF, by increasing the number of marrow megakaryocytes and circulating platelets is an effective therapy for carboplatin-induced thrombocytopenia in mice.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 54-59 ◽  
Author(s):  
AM Farese ◽  
P Hunt ◽  
T Boone ◽  
TJ MacVittie

Megakaryocyte growth and development factor (MGDF) is a novel cytokine that binds to the c-mpl receptor and stimulates megakaryocyte development in vitro and in vivo. This report describes the ability of recombinant human (r-Hu) MGDF to affect megakaryocytopoiesis in normal nonhuman primates. r-HuMGDF was administered subcutaneously to normal, male rhesus monkeys once per day for 10 consecutive days at dosages of 2.5, 25, or 250 micrograms/kg of body weight. Bone marrow and peripheral blood were assayed for clonogenic activity and peripheral blood counts were monitored. Circulating platelet counts increased significantly (P < .05) for all doses within 6 days of r-HuMGDF administration and reached maximal levels between day 12 and day 14 postcytokine administration. The 2.5, 25.0, and 250.0 micrograms/kg/d doses elicited peak mean platelet counts that were 592%, 670%, and 449% of baseline, respectively. Bone marrow-derived clonogenic data showed significant increases in the concentration of megakaryocyte (MEG)- colony-forming unit (CFU) and granulocyte-erythroid-macrophage- megakaryocyte (GEMM)-CFU, whereas that of granulocyte-macrophage (GM)- CFU and burst-forming unit-erythroid (BFU-e) remained unchanged during the administration of r-HuMGDF. These data show that r-HuMGDF is a potent stimulator of thrombocytopoiesis in the normal nonhuman primate.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Kazunori Shibuya ◽  
Hiromichi Akahori ◽  
Kazumi Takahashi ◽  
Emiko Tahara ◽  
Takashi Kato ◽  
...  

Abstract Previous studies have shown that daily multiple administration of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) markedly stimulates thrombopoiesis and effectively ameliorates thrombocytopenia, and in most cases anemia and neutropenia, in myelosuppressed animals. In this study, we evaluated the effects of a single intravenous injection of PEG-rHuMGDF on hematopoietic recovery after sublethal total-body irradiation in mice. A single injection of PEG-rHuMGDF (1 to 640 μg/kg) 1 hour after irradiation accelerated platelet, red blood cell (RBC), and white blood cell (WBC) recovery in a dose-dependent fashion. In the bone marrow of vehicle-treated mice, megakaryocytic, erythroid, and myeloid progenitors, as well as day 12 colony-forming unit–spleen (CFU-S), were dramatically decreased much earlier than the nadirs of peripheral blood cells, whereas megakaryocytes were modestly decreased. Treatment with PEG-rHuMGDF (80 μg/kg, an optimal dose) 1 hour after irradiation resulted in more rapid recovery of these four hematopoietic progenitors and also significantly facilitated megakaryocyte recovery. In addition, the same PEG-rHuMGDF administration schedule expanded bone marrow cells capable of rescuing lethally irradiated recipient mice. As the interval between irradiation and PEG-rHuMGDF treatment was longer, its effects on hematopoietic recovery were attenuated. In contrast to the effects of PEG-rHuMGDF, a single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) 1 hour after irradiation exclusively accelerated WBC recovery, but only to a similar extent as PEG-rHuMGDF (80 μg/kg) treatment even when rhG-CSF doses were escalated to 1,000 μg/kg. This appeared related to different pharmacokinetics of these two factors after a single injection in irradiated mice. The concentrations of PEG-rHuMGDF after injection persisted in the plasma for a longer time compared with rhG-CSF. These results indicate that a single injection of PEG-rHuMGDF at an early time after irradiation is able to effectively improve thrombocytopenia, anemia, and leukopenia with concomitant accelerated recovery of both primitive and committed hematopoietic progenitors in irradiated mice. Our data also show that compared with the rhG-CSF shown to exert multilineage effects on hematopoiesis, PEG-rHuMGDF has more wide-ranging effects on peripheral blood cell recovery.


Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1509-1514 ◽  
Author(s):  
G Molineux ◽  
CA Hartley ◽  
P McElroy ◽  
C McCrea ◽  
IK McNiece

Megakaryocyte growth and development factor (MGDF) is a recently characterized ligand for the cell surface receptor mpl. We have evaluated the effects of polyethylene glycollated recombinant human MGDF (PEG-rHuMGDF) on recovery of hematopoietic cells in mice following bone marrow transplantation (BMT) to support lethal irradiation. Mice treated with PEG-rHuMGDF (50 micrograms/kg/d) had accelerated recovery of platelet numbers compared with BMT mice treated with carrier or recombinant human granulocyte colony-stimulating factor (rHuG-CSF, 72 or 200 micrograms/kg/d). In contrast, PEG-rHuMGDF had no effect on white blood cell (WBC) or red blood cell (RBC) recovery. As previously reported, animals treated with rHuG-CSF had an enhanced recovery of WBC but not platelet or RBC levels. Interestingly, BMT receipient mice treated with the combination of PEG-rHuMGDF and rHuG-CSF showed simultaneous enhanced recovery of both leukocytes and platelets. PEGylated rHuMGDF was found to be considerably more potent than non- PEGylated rHuMGDF in this setting. PEG-rHuMGDF is an effective growth factor for enhancing platelet recovery in mice following BMT either alone or in combination with rHuG-CSF. It will be of interest to evaluate in a clinical setting the ratios of PEG-rHuMGDF and rHuG-CSF for simultaneous administration of these factors and accelerated recovery of both leukocytes and platelets.


Blood ◽  
1982 ◽  
Vol 59 (1) ◽  
pp. 185-187
Author(s):  
PA Mora ◽  
J Valle ◽  
A Salvado ◽  
DG Wright

Three N-formylated oligopeptides with different known activities as chemotactic factors for leukocytes were studied to determined if these mediators affect the in vitro proliferation of myelomonocytic colony- forming cells (CFU-C) recovered from murine bone marrow. All three oligopeptides inhibited CFU-C growth in a dose-dependent fashion that correlated with their relative potencies as chemotactic factors. This inhibition was not altered by growth of CFU-C in the presence of indomethacin, by varying the concentrations of colony-stimulating factor (CSF), or by depleting marrow cell preparations of mature granulocytic elements. These studies indicate that chemotactic factors may mediate myelosuppression through effects on committed myeloid precursor cells in the marrow.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1691-1691
Author(s):  
Stephen M Ansell ◽  
Deanna Grote ◽  
Sherine F. Elsawa ◽  
Mamta Gupta ◽  
Steven C Ziesmer ◽  
...  

Abstract Abstract 1691 Poster Board I-717 Waldenström macroglobulinemia (WM) is a B-cell malignancy that is characterized by the production of a monoclonal IgM protein and a lymphoplasmacytic infiltrate in the bone marrow. The aberrant production of the monoclonal IgM can result in serum hyperviscosity that can cause significant morbidity in patients with this disease. In previous work, we have shown that IL-6 significantly upregulates IgM secretion by WM cells and that IL-6 secretion is regulated by CCL5 (Rantes). We have also shown that IL-6 mediated IgM secretion in WM requires phosphorylation of Stat1 and Stat3. Because IL-6 induced signaling involves the Jak/Stat pathway, we tested whether the use of a Jak/Stat inhibitor, TG101348, would result in down regulation of CCL5, IL-6 and IgM production and inhibit cell proliferation and viability in WM. First, we determined whether TG101348 could inhibit the production of CCL5 because other Jak inhibitors have been shown to inhibit cytokine production. Using the BCWM.1 cell line as well CD19+ malignant cells from bone marrow specimens from WM patients, we measured CCL5 by ELISA in the culture supernatant 24 hours after treatment with increasing concentrations of the inhibitor. We found that CCL5 secretion was decreased by 50% at a concentration of TG101348 of 250nM and was completely inhibited at 2μM. Next, we measured IL-6 production after treatment with TG101348. We had previously shown that stromal cells are the primary source of IL-6 and therefore used the stromal cell line HS-5 to measure IL-6 by ELISA after treatment with the inhibitor. Our previous work had also shown that IL-6 secretion was mediated by GLI (a member of the Hedgehog pathway) rather than the Jak/Stat pathway. Interestingly, we found that IL-6 secretion was inhibited in a dose dependent fashion but required higher doses for complete suppression (8μM). We then measured IgM production by malignant B-cells 24 hours after treatment with TG101348. Our previous work had shown that IL-6 mediated IgM secretion was dependent on the Jak/Stat pathway. We found that IgM production was inhibited by 50% at 500nM and completely suppressed at 2μM. Finally, we measured the effect of TG101348 on cell proliferation and survival. Using the BCWM.1 cell line, we found that cell proliferation as determined by tritiated thymidine uptake was inhibited in a dose dependent fashion with 50% inhibition at 1μM. Inhibition of cell viability as measured by Annexin V/propidium iodide staining, however, required higher concentrations and cell viability was inhibited with an IC50 of 8μM. These data confirm the role of Jak/Stat signaling in the CCL5-IL-6-IgM axis in WM. We found that TG101348 generally suppressed the signaling and growth of WM cells but that pathways that were known to be Jak/Stat dependent required significantly lower doses to be completely inhibited. These data provide a strong rationale for the use of inhibitors of this pathway, such as TG101348, in the treatment of patients with WM. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lalita Norrasethada ◽  
Wichan Khumpoo ◽  
Ekarat Rattarittamrong ◽  
Thanawat Rattanathammethee ◽  
Chatree Chai-Adisaksopha ◽  
...  

Establishment and analysis of mean platelet volume (MPV) may be helpful in the discrimination between underproduction or over-destruction of platelets as the causes of thrombocytopenia. The primary objective is to find the cut-off point of MPV for distinguishing causes of thrombocytopenia. The secondary objective is to validate the cut-off value of the MPV by using bone marrow examination. Thrombocytopenic patients were enrolled in a training set and a receiving operating characteristics (ROC) curve was plotted to obtain the cut-off value of MPV. A validation set of patients was recruited to validate the cut-off value. The training set included 240 patients. Half with with underproductive (n=120) and half with over-destructive thrombocytopenia (n=120). The best cut-off value of MPV was 8.8 fL. The validation set included 119 patients in total, again in 2 groups, those with underproductive (n=84) and those with overdestructive thrombocytopenia (n=35). The sensitivity, specificity, PPV and NPV when MPV ≥8.8 fL indicating over-destructive thrombocytopenia were 77%, 89%, 89% and 77%, respectively. MPV is useful for differentiating the cause of thrombocytopenia. The value of MPV ≥8.8 fL has acceptable sensitivity and specificity for diagnosis of over-destructive thrombocytopenia.


Sign in / Sign up

Export Citation Format

Share Document