scholarly journals The acid deoxyribonuclease of neutrophils: a possible participant in apoptosis-associated genome destruction

Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2414-2418 ◽  
Author(s):  
RA Gottlieb ◽  
HA Giesing ◽  
RL Engler ◽  
BM Babior

Human neutrophils are terminally differentiated cells that spontaneously undergo apoptosis in tissue culture. Apoptosis in these cells can be delayed by culture in the presence of granulocyte colony- stimulating factor or other inflammatory mediators. Neutrophils were found to contain an acid endonuclease that appeared to be responsible for the internucleosomal DNA cleavage that accompanies apoptosis. As measured by a plasmid nicking assay, this endonuclease had a molecular weight (M(r)) of 35,000, a pH optimum of 5.5, and a threshold for activity of pH 6.6 to 6.8. It was weakly inhibited by divalent cations (Ca2+, Mg2+, and Zn2+) and more strongly inhibited by aurintricarboxylic acid and N-bromosuccinimide. DNA from neutrophils treated with nigericin in buffers of defined pH displayed nucleosomal ladders whose prominence varied with pH in a manner that paralleled the pH dependence of the plasmid cleavage assays, consistent with internucleosomal DNA cleavage by the acid endonuclease. We have previously shown that neutrophils undergo acidification to a pH value as low as 6.0 during apoptosis; we suggest that this endonuclease may be responsible for the DNA cleavage seen in apoptotic neutrophils.

2021 ◽  
Author(s):  
Dennis Winkler ◽  
Sabrina Gfrerer ◽  
Johannes Gescher

AbstractDespite several discoveries in recent years, the physiology of acidophilic Micrarchaeota remains largely enigmatic. “Candidatus Micrarchaeum harzensis A_DKE”, for example, highly expresses numerous genes encoding hypothetical proteins and their function is difficult to elucidate due to a lacking genetic system. Still, not even the intracellular pH value of A_DKE is known, and heterologous production attempts are generally missing so far. Hence, A_DKE’s isocitrate dehydrogenase (MhIDH) was recombinantly produced in Escherichia coli and purified for bio-chemical characterisation. MhIDH appeared to be specific for NADP+, yet promiscuous regarding divalent cations as cofactors. Kinetic studies showed KM-values of 53.03±5.63 µM and 1.94±0.12 mM and kcat-values of 38.48±1.62 s-1 and 43.99±1.46 s-1 for DL-isocitrate and NADP+, respectively. MhIDH’s exceptionally low affinity for NADP+, potentially limiting its reaction rate, can be likely attributed to the presence of a proline residue in the NADP+ binding-pocket, which might cause a decrease in hydrogen bonding of the cofactor and a distortion of local secondary structure. Furthermore, a pH optimum of 7.89 implies, that A_DKE applies potent mechanisms of proton homoeostasis, to maintain a slightly alkaline cytosolic milieu in a highly acidic environment.


1997 ◽  
Vol 337 (2-3) ◽  
pp. 309-314 ◽  
Author(s):  
Ken Nakazawa ◽  
Min Liu ◽  
Kazuhide Inoue ◽  
Yasuo Ohno

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia McGillick ◽  
Jessica R. Ames ◽  
Tamiko Murphy ◽  
Christina R. Bourne

AbstractType II toxin-antitoxin systems contain a toxin protein, which mediates diverse interactions within the bacterial cell when it is not bound by its cognate antitoxin protein. These toxins provide a rich source of evolutionarily-conserved tertiary folds that mediate diverse catalytic reactions. These properties make toxins of interest in biotechnology applications, and studies of the catalytic mechanisms continue to provide surprises. In the current work, our studies on a YoeB family toxin from Agrobacterium tumefaciens have revealed a conserved ribosome-independent non-specific nuclease activity. We have quantified the RNA and DNA cleavage activity, revealing they have essentially equivalent dose-dependence while differing in requirements for divalent cations and pH sensitivity. The DNA cleavage activity is as a nickase for any topology of double-stranded DNA, as well as cleaving single-stranded DNA. AtYoeB is able to bind to double-stranded DNA with mid-micromolar affinity. Comparison of the ribosome-dependent and -independent reactions demonstrates an approximate tenfold efficiency imparted by the ribosome. This demonstrates YoeB toxins can act as non-specific nucleases, cleaving both RNA and DNA, in the absence of being bound within the ribosome.


2010 ◽  
Vol 108 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Magnus Johansson ◽  
Ka-Weng Ieong ◽  
Stefan Trobro ◽  
Peter Strazewski ◽  
Johan Åqvist ◽  
...  

We studied the pH-dependence of ribosome catalyzed peptidyl transfer from fMet-tRNAfMet to the aa-tRNAs Phe-tRNAPhe, Ala-tRNAAla, Gly-tRNAGly, Pro-tRNAPro, Asn-tRNAAsn, and Ile-tRNAIle, selected to cover a large range of intrinsic pKa-values for the α-amino group of their amino acids. The peptidyl transfer rates were different at pH 7.5 and displayed different pH-dependence, quantified as the pH-value, , at which the rate was half maximal. The -values were downshifted relative to the intrinsic pKa-value of aa-tRNAs in bulk solution. Gly-tRNAGly had the smallest downshift, while Ile-tRNAIle and Ala-tRNAAla had the largest downshifts. These downshifts correlate strongly with molecular dynamics (MD) estimates of the downshifts in pKa-values of these aa-tRNAs upon A-site binding. Our data show the chemistry of peptide bond formation to be rate limiting for peptidyl transfer at pH 7.5 in the Gly and Pro cases and indicate rate limiting chemistry for all six aa-tRNAs.


1966 ◽  
Vol 44 (11) ◽  
pp. 1469-1475 ◽  
Author(s):  
Marjorie A. Brewster ◽  
Ezzat S. Younathan

Adenylate kinase from mitochondria of rat liver was made soluble by sonication. The enzyme had a pH optimum of 8.0, temperature optimum of 30°, and activation energy of 12.2 kcal/mole. It was activated by several divalent cations in the following order of efficiency: Mg++ > Co++ > Mn++ > Ca++, with an optimal Mg++: ADP ratio of 1. The apparent Km value (ADP as substrate) was found to be 1.3 mM at pH 7.4 and 30°. The activity was sensitive to phloretin and mildly activated by aurovertin. Oligomycin, 2,4-dinitrophenol, p-chloromercuribenzoate, alloxan, and phlorizin had no effect on the activity. The metabolic function and a comparison of the properties of this solubilized mitochondrial adenylate kinase with those of similar preparations from other sources are discussed in the light of these findings. During this study, a sensitive method adaptable for a large number of assays of adenylate kinase was developed, and is described in detail.


2017 ◽  
Vol 63 (01) ◽  
pp. 47-53
Author(s):  
Irina Mladenoska ◽  
Verica Petkova ◽  
Tatjana Kadifkova Panovska

The effect of substrate concentration on the enzyme activity in the reaction of glucose conversion into gluconic acid was investigated by using three different enzyme preparations in media with two different glucose concentrations. The media were simulating the conditions in the must, thus named as minimal model must, and were composed form combination of several organic acids and glucose. Those media were having initial pH of 3.5 that is a very unfavorable for glucose oxidase activity having a pH optimum at the pH value of 5.5. Among the three preparations used, the bakery additive, Alphamalt Gloxy 5080, was the most active in the medium with glucose concentration of 10 g/L, showing conversion of more than 70% for the period of 24 h, while the same enzyme preparation in the medium with 100 g/L glucose converted only about 7% of glucose. The pH value of the medium at the beginning and at the end of the enzymatic reaction was a good indicator of the enzyme activity. It seems that for the conversion of glucose in higher concentration, enzymatic preparation in high concentration should also be used. The preliminary attempt of immobilization of two preparations of glucose oxidases in alginate beads was also performed and a successful immobilization procedure for utilization in food industry was preliminarily developed. Keywords: glucose oxidases, enzymatic pretreatment, glucose, gluconic acid, model wine, functional food


Genetics ◽  
1982 ◽  
Vol 100 (3) ◽  
pp. 455-473
Author(s):  
Tommy C Douglas ◽  
Kathryn A Kimmel ◽  
Patti E Dawson

ABSTRACT Two genetically variant forms of rat "acid" β-galactosidase were found to differ in isoelectric point and pH dependence, but not in thermostability or sensitivity to inhibition by p-mercuribenzoate (PMB). The results of two backcrosses and an intercross indicated that the isoelectric focusing phenotypes are controlled by two codominant alleles at a single autosomal locus, for which we propose the name Glb-1. No significant linkage between Glb-1 and albino (LG I), brown (LG II), or hooded (LG VI) was observed. Strain-specific differences in total levels of kidney β-galactosidase were detected, but it is not yet known whether the variation is controlled by genes linked to Glb-1. Experiments in which organ homogenates were incubated with neuraminidase indicated that the genetically variant forms do not result from differences in sialylation, though sialylation does appear to be largely responsible for the presence of multiple bands within each phenotype and for differences in the banding patterns of β-galactosidases derived from different organs. The β-galactosidase present in the bands used for Glb-1 typing resembles human GM1 gangliosidase (GLB1) with respect to pH optimum, substrate specificity, and susceptibility to inhibition by PMB. It also appears that Glb-1 is homologous with the Bgl-e locus of the mouse. In rats as in mice the genetically variant bands of β-galactosidase are active at acid pH and have relatively high isoelectric points. In both species these bands are readily detectable in kidney homogenates, and can be revealed in homogenates of liver or spleen following treatment with neuraminidase. The presence of the same β-galactosidase bands in homogenates of rat kidney and small intestine as well as in neuraminidase-treated homogenates of liver and spleen suggests that the Glb-1 variants differ by one or more point mutations in the structural gene for "acid" β-galactosidase.


1988 ◽  
Vol 66 (5) ◽  
pp. 425-435 ◽  
Author(s):  
Amy Mok ◽  
Tanya Wong ◽  
Octavio Filgueiras ◽  
Paul G. Casola ◽  
Don W. Nicholson ◽  
...  

CDPdiacylglycerol pyrophosphatase (E. C. 3.6.1.26) activity has been examined in rat lung mitochondrial and microsomal fractions. While the mitochondrial hydrolase exhibited a broad pH optimum from pH 6–8, the microsomal activity decreased rapidly above pH 6.5. Apparent Km values of 36.2 and 23.6 μM and Vmax values of 311 and 197 pmol∙min−1∙mg protein−1 were observed for the mitochondrial and microsomal preparations, respectively. Addition of parachloromercuriphenylsulphonic acid led to a marked inhibition of the microsomal fraction but slightly stimulated the mitochondrial activity at low concentrations. Mercuric ions were inhibitory with both fractions. Although biosynthetic reactions utilizing CDPdiacylglycerol require divalent cations, addition of Mg2+, Mn2+, Ca2+, Zn2+, Co2+, and Cu2+ all inhibited the catabolic CDPdiacylglycerol hydrolase activity in both fractions. EDTA and EGTA also produced an inhibitory effect, especially with the mitochondrial fraction. Although addition of either adenine or cytidine nucleotides led to a decrease in activity with both fractions, the marked susceptibility to AMP previously reported for this enzyme in Escherichia coli membranes, guinea pig brain lysosomes, and pig liver mitochondria was not observed. These results indicate that rat lung mitochondria and microsomes contain specific CDPdiacylglycerol hydrolase activities, which could influence the rate of formation of phosphatidylinositol and phosphatidylglycerol for pulmonary surfactant.


1992 ◽  
Vol 100 (2) ◽  
pp. 341-367 ◽  
Author(s):  
L Simchowitz ◽  
J A Textor

The pathway by which L-lactate (Lac) crosses the plasma membrane of isolated human neutrophils was investigated. The influx of [14C]Lac from a 2 mM Lac, 145 mM Cl-, 5.6 mM glucose medium was approximately 1.5 meq/liter of cell water.min and was sensitive to the organomercurial agent mersalyl (apparent Ki approximately 20 microM), to alpha-cyano-4-hydroxycinnamate (CHC), the classical inhibitor of monocarboxylate transport in mitochondria, and to UK-5099 (apparent Ki approximately 40 microM), a more potent analogue of CHC. Transport was also strongly blocked (greater than 80%) by 1 mM of either 3,5-diiodosalicylic acid, MK-473 (an indanyloxyacetate derivative), or diphenyl-amine-2-carboxylate, and by 0.4 mM pentachlorophenol, but not by 1 mM ethacrynic acid, furosemide, or the disulfonic stilbenes SITS or H2DIDS. One-way [14C]Lac efflux from steady-state cells amounted to approximately 6 meq/liter.min and was likewise affected by the agents listed above. Influx, which was membrane potential insensitive and Na+ independent, displayed a strong pH dependence: extracellular acidification enhanced uptake while alkalinization inhibited the process (pK' approximately 5.7 at 2 mM external Lac). The rate of [14C]Lac influx was a saturable function of external Lac, the Km being approximately 7 mM. Steady-state cells exhibited an intracellular Lac content of approximately 5 mM and secreted lactic acid into the bathing medium a a rate of approximately 4 meq/liter.min. Secretion was completely suppressed by 1 mM mersalyl which inactivates the carrier, leading to an internal accumulation of Lac. That the Lac carrier truly mediates an H+ + Lac- cotransport (or formally equivalent Lac-/OH- exchange) was documented by pH-stat techniques wherein an alkalinization of poorly buffered medium could be detected upon the addition of Lac; these pH changes were sensitive to mersalyl. Thus, the Lac carrier of neutrophils possesses several features in common with other monocarboxylate transport systems in erythrocytes and epithelia.


Sign in / Sign up

Export Citation Format

Share Document