scholarly journals Regulation of platelet production and function by megakaryocyte growth and development factor in nonhuman primates

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1833-1844 ◽  
Author(s):  
LA Harker ◽  
P Hunt ◽  
UM Marzec ◽  
AB Kelly ◽  
A Tomer ◽  
...  

The primary physiologic regulator of platelet production, Mpl ligand, has recently been cloned and characterized. To define the regulatory role of Mpl ligand on platelet production and function we measured the effects of a recombinant truncated human Mpl ligand, megakaryocyte growth and development factor (rHu-MGDF) on megakaryocytopoiesis, platelet function, and thrombogenesis in nonhuman primates. rHu-MGDF was administered to 10 baboons for 28 days while performing pharmacokinetics and repeated measurements of the following: (1) platelet count, volume, turnover, and function ex vivo and in vitro; (2) marrow megakaryocyte number, volume, and ploidy; and (3) platelet deposition and fibrin accumulation on segments of vascular graft and endarterectomized aorta in vivo. Daily subcutaneous injections of rHu- MGDF (5 microgram/kg/d) attained plasma concentrations averaging 1,300 +/- 300 pg/mL 2 hours after injection with trough levels of 300 +/- 65 pg/mL before the next dose. These levels of rHu-MGDF incrementally increased the peripheral platelet concentration threefold by day 7 and fivefold by day 28 (P < 10(-4)) associated with a reciprocal decrease of 25% in mean platelet volumes (P < 10(-3)). Platelet mass turnover, a steady-state measure of platelet production, increased fivefold (P < 10(-4)). Platelet morphology, life span, and recovery were normal. No significant change occurred in peripheral leukocyte, neutrophil, or erythrocyte counts (P > .1 in all cases). The platelet count gradually returned to baseline within 2 weeks after discontinuing rHu-MGDF infections. Marrow megakaryocyte volume doubled (P < 10(-3)) three days after initiating rHu-MGDF therapy and the modal ploidy shifted from 16N to 64N (P < 10(-4)). Marrow megakaryocyte number increased twofold by day 7, and nearly fourfold by day 28 (P < 10(-4)), resulting in a 6.5- fold increase in marrow megakaryocyte mass (P < 10(-3)). The effects of rHu-MGDF on thrombosis were determined by comparing baseline, day 5, and day 28 rHu-MGDF-treatment measurements of 111In-platelet deposition and 125I-fibrin accumulation on segments of homologous endarterectomized aorta (EA) and vascular graft (VG) interposed in arteriovenous femoral shunts. rHu-MGDF increased 111In-platelet deposition in direct proportion to the circulating concentration of platelets for both EA and VG (r=.98 in both cases), without significant changes in fibrin accumulation (P > .5 in both cases). During the first week of rHu-MGDF treatment ex vivo platelet aggregatory responsiveness was enhanced to physiologic agonists (adenosine diphosphate, collagen, and thrombin receptor agonist peptide, TRAP1–6) (P < .05 in all cases). Although in vitro platelet aggregation was not induced by any concentration of rHu-MGDF tested (P > .5), rHu-MGDF enhanced aggregatory responses to low doses of physiologic agonists, effects that were maximal at 10 ng/mL for baboon platelets and 100 ng/mL for human platelets, and were blocked by excess soluble c-Mpl receptor. Flow cytometric expression of platelet activation epitopes was not increased on resting platelets (ligand-induced binding sites, P- selectin, or Annexin V binding sites; P > .1 in all cases). Megakaryocyte growth and development factor regulates platelet production and function by stimulating endoreduplication and megakaryocyte formation from marrow progenitor cells, and transiently enhancing platelet functional responses ex vivo. rHu-MGDF has the potential for achieving platelet hemostatic protection with minimal thrombo-occlusive risk.

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1833-1844 ◽  
Author(s):  
LA Harker ◽  
P Hunt ◽  
UM Marzec ◽  
AB Kelly ◽  
A Tomer ◽  
...  

Abstract The primary physiologic regulator of platelet production, Mpl ligand, has recently been cloned and characterized. To define the regulatory role of Mpl ligand on platelet production and function we measured the effects of a recombinant truncated human Mpl ligand, megakaryocyte growth and development factor (rHu-MGDF) on megakaryocytopoiesis, platelet function, and thrombogenesis in nonhuman primates. rHu-MGDF was administered to 10 baboons for 28 days while performing pharmacokinetics and repeated measurements of the following: (1) platelet count, volume, turnover, and function ex vivo and in vitro; (2) marrow megakaryocyte number, volume, and ploidy; and (3) platelet deposition and fibrin accumulation on segments of vascular graft and endarterectomized aorta in vivo. Daily subcutaneous injections of rHu- MGDF (5 microgram/kg/d) attained plasma concentrations averaging 1,300 +/- 300 pg/mL 2 hours after injection with trough levels of 300 +/- 65 pg/mL before the next dose. These levels of rHu-MGDF incrementally increased the peripheral platelet concentration threefold by day 7 and fivefold by day 28 (P < 10(-4)) associated with a reciprocal decrease of 25% in mean platelet volumes (P < 10(-3)). Platelet mass turnover, a steady-state measure of platelet production, increased fivefold (P < 10(-4)). Platelet morphology, life span, and recovery were normal. No significant change occurred in peripheral leukocyte, neutrophil, or erythrocyte counts (P > .1 in all cases). The platelet count gradually returned to baseline within 2 weeks after discontinuing rHu-MGDF infections. Marrow megakaryocyte volume doubled (P < 10(-3)) three days after initiating rHu-MGDF therapy and the modal ploidy shifted from 16N to 64N (P < 10(-4)). Marrow megakaryocyte number increased twofold by day 7, and nearly fourfold by day 28 (P < 10(-4)), resulting in a 6.5- fold increase in marrow megakaryocyte mass (P < 10(-3)). The effects of rHu-MGDF on thrombosis were determined by comparing baseline, day 5, and day 28 rHu-MGDF-treatment measurements of 111In-platelet deposition and 125I-fibrin accumulation on segments of homologous endarterectomized aorta (EA) and vascular graft (VG) interposed in arteriovenous femoral shunts. rHu-MGDF increased 111In-platelet deposition in direct proportion to the circulating concentration of platelets for both EA and VG (r=.98 in both cases), without significant changes in fibrin accumulation (P > .5 in both cases). During the first week of rHu-MGDF treatment ex vivo platelet aggregatory responsiveness was enhanced to physiologic agonists (adenosine diphosphate, collagen, and thrombin receptor agonist peptide, TRAP1–6) (P < .05 in all cases). Although in vitro platelet aggregation was not induced by any concentration of rHu-MGDF tested (P > .5), rHu-MGDF enhanced aggregatory responses to low doses of physiologic agonists, effects that were maximal at 10 ng/mL for baboon platelets and 100 ng/mL for human platelets, and were blocked by excess soluble c-Mpl receptor. Flow cytometric expression of platelet activation epitopes was not increased on resting platelets (ligand-induced binding sites, P- selectin, or Annexin V binding sites; P > .1 in all cases). Megakaryocyte growth and development factor regulates platelet production and function by stimulating endoreduplication and megakaryocyte formation from marrow progenitor cells, and transiently enhancing platelet functional responses ex vivo. rHu-MGDF has the potential for achieving platelet hemostatic protection with minimal thrombo-occlusive risk.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 511-521 ◽  
Author(s):  
LA Harker ◽  
UM Marzec ◽  
P Hunt ◽  
AB Kelly ◽  
A Tomer ◽  
...  

Thrombopoietin (TPO) is the physiologic Mpl-ligand regulating platelet production. Pegylated human recombinant megakaryocyte growth and development factor (PEG-rHuMGDF), a truncated polypeptide Mpl-ligand derivitized with poly-(ethylene glycol), induces megakaryocyte endoreduplication and proliferation in vitro and in vivo. In the present study, the dose-response effects of PEG-rHuMGDF on pharmacokinetics, megakaryocytopoiesis, platelet production, and platelet function were characterized for dosing 0.05, 0.10, 0.50, or 2.5 micrograms/kg/d in 22 baboons for 28 days. Daily subcutaneous injections of PEG-rHuMGDF produced linear log-dose responses in (1) steady-state trough plasma levels of PEG-HuMGDF (P < 10(-3)); (2) marrow megakaryocyte volume (P < 10(-3)), ploidy (P <10(-4)), and number (P < .01); and (3) peripheral platelet concentrations (P < 10(- 4)) and platelet mass turnover (P < 10(-3)). Platelet morphology, life span, and recovery were normal, and peripheral leukocyte, neutrophil, and erythrocyte counts were not significantly affected by PEG-rHuMGDF (P > .1 in all cases). PEG-rHuMGDF at 0.5 micrograms/kg/d produced similar blood concentrations of Mpl-ligand and platelets as 10 times the dose of rHu-MGDF (5.0 micrograms/kg/d), reflecting the extended plasma half-life achieved through pegylation. Whereas PEG-rHuMGDF did not induce platelet aggregation in vitro, platelet aggregatory responsiveness induced by thrombin receptor agonist peptide (TRAP1–6) and collagen was transiently enhanced ex vivo during the initial few days of PEG-rHuMGDF administration. However, adenosine diphosphate (ADP)-induced platelet aggregation was not enhanced ex vivo by PEG- rHuMGDF therapy. 111In-platelet deposition on segments of homologous endarterectomized aorta (EA) and vascular graft (VG) interposed in arteriovenous femoral shunts increased in direct proportion to the circulating platelet concentration (P < 10(-4) for both EA and VG); 125l-fibrin accumulation was not affected by PEG-rHuMGDF-induced increases in peripheral platelet counts. Changes in platelet production and function produced by PEG-rHuMGDF returned to baseline within 2 weeks after discontinuing treatment. Thus, in nonhuman primates, PEG- rHuMGDF increases platelet production in a linear log-dose-dependent manner by stimulating megakaryocyte endoreduplication and new megakaryocyte formation from marrow hematopoietic progenitors. These findings suggest that appropriate dosing of PEG-rHuMGDF therapy during periods of chemotherapy-induced marrow suppression may maintain hemostatic concentrations of peripheral platelets without increasing the risk of thrombosis.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 54-59 ◽  
Author(s):  
AM Farese ◽  
P Hunt ◽  
T Boone ◽  
TJ MacVittie

Megakaryocyte growth and development factor (MGDF) is a novel cytokine that binds to the c-mpl receptor and stimulates megakaryocyte development in vitro and in vivo. This report describes the ability of recombinant human (r-Hu) MGDF to affect megakaryocytopoiesis in normal nonhuman primates. r-HuMGDF was administered subcutaneously to normal, male rhesus monkeys once per day for 10 consecutive days at dosages of 2.5, 25, or 250 micrograms/kg of body weight. Bone marrow and peripheral blood were assayed for clonogenic activity and peripheral blood counts were monitored. Circulating platelet counts increased significantly (P < .05) for all doses within 6 days of r-HuMGDF administration and reached maximal levels between day 12 and day 14 postcytokine administration. The 2.5, 25.0, and 250.0 micrograms/kg/d doses elicited peak mean platelet counts that were 592%, 670%, and 449% of baseline, respectively. Bone marrow-derived clonogenic data showed significant increases in the concentration of megakaryocyte (MEG)- colony-forming unit (CFU) and granulocyte-erythroid-macrophage- megakaryocyte (GEMM)-CFU, whereas that of granulocyte-macrophage (GM)- CFU and burst-forming unit-erythroid (BFU-e) remained unchanged during the administration of r-HuMGDF. These data show that r-HuMGDF is a potent stimulator of thrombocytopoiesis in the normal nonhuman primate.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2514-2522 ◽  
Author(s):  
Laurence A. Harker ◽  
Lorin K. Roskos ◽  
Ulla M. Marzec ◽  
Richard A. Carter ◽  
Judith K. Cherry ◽  
...  

The effects of thrombopoietic stimulation on megakaryocytopoiesis, platelet production, and platelet viability and function were examined in normal volunteers randomized to receive single bolus subcutaneous injections of 3 μg/kg pegylated recombinant megakaryocyte growth and development factor (PEG-rHuMGDF) or placebo in a 3:1 ratio. PEG-rHuMGDF transiently doubled circulating platelet counts, from 237 ± 41 × 103/μL to 522 ± 90 × 103/μL (P< .0001), peaking on day 12. Baseline and day-12 samples showed no differences in responsiveness of platelets to adenosine diphosphate or thrombin receptor agonist peptide (P > .4 in all cases); expression of platelet ligand-induced binding sites or annexin V binding sites (P > .6 in both cases); or density of platelet TPO-receptors (P > .5). Platelet counts normalized by day 28. The life span of autologous 111In-labeled platelets increased from 205 ± 18 hours (baseline) to 226 ± 22 hours (P < .01) on day 8. Platelet life span decreased from 226 ± 22 hours (day 8) to 178 ± 53 hours (P < .05) on day 18. The theoretical basis for senescent changes in mean platelet life span was illustrated by biomathematical modeling. Platelet turnover increased from 43.9 ± 11.9 × 103 platelets/μL/d (baseline) to 101 ± 27.6 × 103 platelets/μL/d (P = .0009), and marrow megakaryocyte mass expanded from 37.4 ± 18.5 fL/kg to 62 ± 17 × 1010 fL/kg (P = .015). Although PEG-rHuMGDF initially increased megakaryocyte volume and ploidy, subsequently ploidy showed a transient reciprocal decrease when the platelet counts exceeded placebo values. In healthy human volunteers PEG-rHuMGDF transiently increases megakaryocytopoiesis 2-fold. Additionally, peripheral platelets expand correspondingly and exhibit normal function and viability during the ensuing 10 days. The induced perturbation in steady state thrombopoiesis resolves by 4 weeks.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2514-2522 ◽  
Author(s):  
Laurence A. Harker ◽  
Lorin K. Roskos ◽  
Ulla M. Marzec ◽  
Richard A. Carter ◽  
Judith K. Cherry ◽  
...  

Abstract The effects of thrombopoietic stimulation on megakaryocytopoiesis, platelet production, and platelet viability and function were examined in normal volunteers randomized to receive single bolus subcutaneous injections of 3 μg/kg pegylated recombinant megakaryocyte growth and development factor (PEG-rHuMGDF) or placebo in a 3:1 ratio. PEG-rHuMGDF transiently doubled circulating platelet counts, from 237 ± 41 × 103/μL to 522 ± 90 × 103/μL (P&lt; .0001), peaking on day 12. Baseline and day-12 samples showed no differences in responsiveness of platelets to adenosine diphosphate or thrombin receptor agonist peptide (P &gt; .4 in all cases); expression of platelet ligand-induced binding sites or annexin V binding sites (P &gt; .6 in both cases); or density of platelet TPO-receptors (P &gt; .5). Platelet counts normalized by day 28. The life span of autologous 111In-labeled platelets increased from 205 ± 18 hours (baseline) to 226 ± 22 hours (P &lt; .01) on day 8. Platelet life span decreased from 226 ± 22 hours (day 8) to 178 ± 53 hours (P &lt; .05) on day 18. The theoretical basis for senescent changes in mean platelet life span was illustrated by biomathematical modeling. Platelet turnover increased from 43.9 ± 11.9 × 103 platelets/μL/d (baseline) to 101 ± 27.6 × 103 platelets/μL/d (P = .0009), and marrow megakaryocyte mass expanded from 37.4 ± 18.5 fL/kg to 62 ± 17 × 1010 fL/kg (P = .015). Although PEG-rHuMGDF initially increased megakaryocyte volume and ploidy, subsequently ploidy showed a transient reciprocal decrease when the platelet counts exceeded placebo values. In healthy human volunteers PEG-rHuMGDF transiently increases megakaryocytopoiesis 2-fold. Additionally, peripheral platelets expand correspondingly and exhibit normal function and viability during the ensuing 10 days. The induced perturbation in steady state thrombopoiesis resolves by 4 weeks.


2022 ◽  
Author(s):  
Homa Majd ◽  
Ryan M Samuel ◽  
Jonathan T Ramirez ◽  
Ali Kalantari ◽  
Kevin Barber ◽  
...  

The enteric nervous system (ENS) plays a central role in gut physiology and mediating the crosstalk between the gastrointestinal (GI) tract and other organs. The human ENS has remained elusive, highlighting the need for an in vitro modeling and mapping blueprint. Here we map out the developmental and functional features of the human ENS, by establishing robust and scalable 2D ENS cultures and 3D enteric ganglioids from human pluripotent stem cells (hPSCs). These models recapitulate the remarkable neuronal and glial diversity found in primary tissue and enable comprehensive molecular analyses that uncover functional and developmental relationships within these lineages. As a salient example of the power of this system, we performed in-depth characterization of enteric nitrergic neurons (NO neurons) which are implicated in a wide range of GI motility disorders. We conducted an unbiased screen and identified drug candidates that modulate the activity of NO neurons and demonstrated their potential in promoting motility in mouse colonic tissue ex vivo. We established a high-throughput strategy to define the developmental programs involved in NO neuron specification and discovered that PDGFR inhibition boosts the induction of NO neurons in enteric ganglioids. Transplantation of these ganglioids in the colon of NO neuron-deficient mice results in extensive tissue engraftment, providing a xenograft model for the study of human ENS in vivo and the development of cell-based therapies for neurodegenerative GI disorders. These studies provide a framework for deciphering fundamental features of the human ENS and designing effective strategies to treat enteric neuropathies.  


2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.


2019 ◽  
Vol 28 (12) ◽  
pp. 1603-1613 ◽  
Author(s):  
Marcus Bergström ◽  
Malin Müller ◽  
Marie Karlsson ◽  
Hanne Scholz ◽  
Nils Tore Vethe ◽  
...  

Adoptive transfer of autologous polyclonal regulatory T cells (Tregs) is a promising option for reducing graft rejection in allogeneic transplantation. To gain therapeutic levels of Tregs there is a need to expand obtained cells ex vivo, usually in the presence of the mTOR inhibitor Rapamycin due to its ability to suppress proliferation of non-Treg T cells, thus promoting a purer Treg yield. Azithromycin is a bacteriostatic macrolide with mTOR inhibitory activity that has been shown to exert immunomodulatory effects on several types of immune cells. In this study we investigated the effects of Azithromycin, compared with Rapamycin, on Treg phenotype, growth, and function when expanding bulk, naïve, and memory Tregs. Furthermore, the intracellular concentration of Rapamycin in CD4+ T cells as well as in the culture medium was measured for up to 48 h after supplemented. Treg phenotype was assessed by flow cytometry and Treg function was measured as inhibition of responder T-cell expansion in a suppression assay. The concentration of Rapamycin was quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Azithromycin and Rapamycin both promoted a FoxP3-positive Treg phenotype in bulk Tregs, while Rapamycin also increased FoxP3 and FoxP3+Helios positivity in naïve and memory Tregs. Furthermore, Rapamycin inhibited the expansion of naïve Tregs, but also increased their suppressive effect. Rapamycin was quickly degraded in 37°C medium, yet was retained intracellularly. While both compounds may benefit expansion of FoxP3+ Tregs in vitro, further studies elucidating the effects of Azithromycin treatment on Tregs are needed to determine its potential use.


2001 ◽  
Vol 85 (01) ◽  
pp. 152-159 ◽  
Author(s):  
Uichi Nishiyama ◽  
Haruhiko Morita ◽  
Yoshifumi Torii ◽  
Tomoaki Kuwaki ◽  
Eiko Shimizu ◽  
...  

SummaryThrombopoietin (TPO), or megakaryocyte growth and development factor (MGDF), has been shown to potentiate the sensitivity of normal human platelets to various agonists in vitro. The present study investigated the functional and biochemical properties of platelets from mice rendered thrombocytopenic by sublethal irradiation with regard to the reactivity to recombinant murine MGDF (rmMGDF) in vitro. During the course of reversible thrombocytopenia following irradiation, platelets from irradiated mice which had lower platelet counts and reciprocally higher plasma TPO levels showed lower reactivity to rmMGDF in agonist-induced platelet aggregation. Intravenous injections of recombinant soluble murine c-Mpl (sMpl), which has the ability to capture TPO, after irradiation restored the reactivity of platelets at the platelet nadir to rmMGDF. On the other hand, platelets prepared from normal mice 3 h after a single intravenous injection of pegylated rmMGDF did not respond to rmMGDF. There was a marked decrease in c-Mpl and Janus kinase 2 (JAK2) in platelets from irradiated mice at the platelet nadir. Similar results were observed with platelets from mice administered pegylated rmMGDF. JAK2 was only moderately decreased, however, in platelets from mice given sMpl after irradiation. These results indicate that exposure of platelets to increased endogenous TPO levels in vivo in thrombocytopenic mice leads to a reduction in the platelet reactivity to rmMGDF in vitro. Further, these results suggest that the c-Mpl-mediated signaling pathway, which is essential for the priming effect of rmMGDF, is defective in thrombocytopenic murine platelets.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4486-4492 ◽  
Author(s):  
MM Hokom ◽  
D Lacey ◽  
OB Kinstler ◽  
E Choi ◽  
S Kaufman ◽  
...  

Megakaryocyte growth and development factor (MGDF) is a potent inducer of megakaryopoiesis in vitro and thrombopoiesis in vivo. The effects of MGDF appear to be lineage-selective, making this cytokine an ideal candidate for use in alleviating clinically relevant thrombocytopenias. This report describes a murine model of life-threatening thrombocytopenia that results from the combination treatment of carboplatin and sublethal irradiation. Mortality of this regimen is 94% and is associated with widespread internal bleeding. The daily administration of pegylated recombinant human MGDF (PEG-rMGDF) significantly reduced mortality (to < 15%) and ameliorated the depth and duration of thrombocytopenia. The severity of leucopenia and anemia was also reduced, although it was not clear whether these effects were direct. Platelets generated in response to PEG-rMGDF were morphologically indistinguishable from normal platelets. PEG-rMGDF administered in combination with murine granulocyte colony-stimulating factor completely prevented mortality and further reduced leukopenia and thrombocytopenia. These data support the concept that PEG-rMGDF may be useful to treat iatrogenic thrombocytopenias.


Sign in / Sign up

Export Citation Format

Share Document