scholarly journals Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections

Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 3022-3027 ◽  
Author(s):  
E de Vries ◽  
HR Koene ◽  
JM Vossen ◽  
JW Gratama ◽  
AE von dem Borne ◽  
...  

We found an unusual fc gamma receptor IIIa (CD16) phenotype on the natural killer (NK) cells of a 3-year-old boy, who suffered from recurrent viral respiratory tract infections since birth. He also had severe clinical problems after Bacille Calmette-Geerin (BCG) vaccination and following Epstein-Barr virus and Varicella Zoster virus infections. His peripheral blood lymphocytes contained a normal percentage and absolute number of CD3-CD7+ cells, which were positively stained with the CD16 monoclonal antibodies (MoAbs) 3G8 and CLBFcRgran1, but did marginally stain with the CD16 MoAb Lau11c/B73.1. Fc gamma RillIb expression on granulocytes appeared to be normal. NK cell function, analyzed in vitro by direct cytotoxicity on K562 target cells and ADCC-activity on P815 target cells, was normal compared with an age-matched healthy control. Sequence analysis of the Fc gamma RIIIA gene, encoding CD16 on NK cells and macrophages, showed a T to A nucleotide substitution at position 230 on both alleles, predicting a leucine (L) to histidine (H) amino acid change position 48 in the first extracellular lg-like domain of Fc gamma RIIIa, which contains the Leu11c/B73.1 epitope. The combined use of CD16 and CD56 MoAbs labeled with the same fluorescent dye, as often applied in routine immunophenotyping procedures, will leave these homozygotes undiagnosed. The pattern of infections in this patient is in agreement with the postulated function of NK cells in the immunological defense against viruses and other intracellular microorganisms. Further analysis of the NK cell function in vitro and follow-up of the clinical course of Fc gamma RIIIA-48H/H homozygotes is required to ascertain whether this genotype is causally related to an NK cell immunodeficiency.

1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi101-vi102
Author(s):  
Amber Kerstetter-Fogle ◽  
Folashade Otegbeye ◽  
David Soler ◽  
Peggy Harris ◽  
Alankrita Raghavan ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy associated with a 12-15 month survival after surgery and radio-chemotherapy. Utilizing adoptive cellular immunotherapy using natural killer (NK) cells has developed over the past two decades for a variety of hematologic malignancies. This approach in solid malignancies is limited by questions of cell dose versus tumor burden, insufficient tumor infiltration, and a tumor microenvironment that suppresses NK cell function. METHODS We isolated NK cells from healthy volunteers and activated them using IL-2, -15, -12, -18, then perform cytotoxic assays in the presence of glioma stem cells. We also tested the efficacy of the NK cells with intracranial delivery in a pre-clinical murine model of glioma. We tested various concentrations of IL-2 and IL-15 on the cytokine culture platform. RESULTS In this study, we demonstrate human NK cells, activated using a cytokine cocktail of interleukins-2, -15, -12, and -18, exert strong cytotoxic events against glioma cell lines. To further examine the efficacy of activated NK cells in vitro, we utilized intracranially xenografted glioma lines and demonstrated a survival benefit with tumor bed injections of these cytokine-activated NK cells (p=0.0089). We were able to confirm that NK cells cultured with low doses (200u IL2; 50ng/ml IL15) of both cytokines are just as effective as higher doses. This is important, as in vivoexhaustion of NK cells stimulated with high doses of either cytokine has been well validated. We also found that low-dose irradiation (4Gy) of glioma cells prior to co-culture with cytokine-activated NK cells promoted increased targeted glioma cell killing within 4 hours(32% cell killing). CONCLUSIONS These findings suggest that in a clinical study, injection of cytokine-activated NK cells into the glioblastoma tumor bed could be used as adjuvant treatment following either stereotactic radiation or surgical resection.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3665-3668 ◽  
Author(s):  
Josephine L. Meade ◽  
Erika A. de Wynter ◽  
Peter Brett ◽  
Saghira Malik Sharif ◽  
C. Geoffrey Woods ◽  
...  

Activation of granzyme B, a key cytolytic effector molecule of natural killer (NK) cells, requires removal of an N-terminal pro-domain. In mice, cathepsin C is required for granzyme processing and normal NK cell cytolytic function, whereas in patients with Papillon-Lefèvre syndrome (PLS), loss-of-function mutations in cathepsin C do not affect lymphokine activated killer (LAK) cell function. Here we demonstrate that resting PLS NK cells do have a cytolytic defect and fail to induce the caspase cascade in target cells. NK cells from these patients contain inactive granzyme B, indicating that cathepsin C is required for granzyme B activation in unstimulated human NK cells. However, in vitro activation of PLS NK cells with interleukin-2 restores cytolytic function and granzyme B activity by a cathepsin C-independent mechanism. This is the first documented example of a human mutation affecting granzyme B activity and highlights the importance of cathepsin C in human NK cell function.


1991 ◽  
Vol 174 (1) ◽  
pp. 21-26 ◽  
Author(s):  
M C Mingari ◽  
A Poggi ◽  
R Biassoni ◽  
R Bellomo ◽  
E Ciccone ◽  
...  

Purified CD3-4- thymocytes were obtained by depletion of CD3+ and CD4+ cells from fresh thymocyte suspensions. 5-15% of these cells were found to express CD16 antigen, while other natural killer (NK) cell markers were virtually absent. Double fluorescence analysis revealed that 20-40% of thymic CD16+ cells coexpressed CD1, while approximately half were cyCD3+. When cultured in the presence of peripheral blood lymphocytes and H9 leukemia cell line as a source of irradiated feeder cells and interleukin 2 (IL-2), CD3-4- thymocytes underwent extensive proliferation. In addition, after 1-2 wk of culture, 30-50% of these cells were found to express CD16 surface antigen. Cloning under limiting dilution conditions of either CD3-4- or CD3-4-16- thymocytes in the presence of irradiated H9 cells resulted in large proportions (approximately 50%) of CD16+ clones. On the basis of the expression of surface CD16 and/or cyCD3 antigen, clones could be grouped in the following subsets: CD16+ cyCD3+; CD16+ cyCD3-; CD16- cyCD3+; and CD16- cyCD3-. All clones expressed CD56 surface antigen, displayed a strong cytolytic activity against NK sensitive (K562) and NK-resistant (M14) target cells, and produced IFN-gamma and tumor necrosis factor, but not IL-2. Similar to peripheral NK cells, thymic CD16+ cells expressed transcripts for CD16 and for CD3 epsilon (Biassoni, R., S. Ferrini, I. Prigione, A. Moretta, and E.O. Long, 1988. J. Immunol. 140:1685.) and zeta chains (Anderson, P., M. Caligiuri, J. Ritz, and S.F. Schlossman. 1989. Nature [Lond.]. 341:159). Therefore, it appears that cells that are phenotypically and functionally similar to CD3- CD16+ NK cells may arise from immature thymocytes.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2780-2780
Author(s):  
Shivani Srivastava ◽  
Hailin Feng ◽  
Menggang Yu ◽  
David Pelloso ◽  
Michael Robertson

Abstract Abstract 2780 NK cells play an important role in innate and adaptive immune responses. Most human NK cells express CD16, an Fc receptor for IgG that mediates lysis of antibody-coated target cells and costimulates interferon (IFN)-g production in response to cytokines. IL-18 is an immunostimulatory cytokine with antitumor activity in preclinical animal models. The effects of IL-18 on human NK cell function were examined. Here we show that NK cells stimulated with immobilized IgG in vitro secreted IFN-g; such IFN-g production was partially inhibited by blocking CD16 with monoclonal antibodies. IL-18 augmented IFN-g production by NK cells stimulated with immobilized IgG or CD16 antibodies (Figure 1). NK cell IFN-g production in response to immobilized IgG and/or IL-18 was inhibited by chemical inhibitors of Syk, extracellular signal-related kinases (ERK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3-K). Stimulation with IL-18 or immobilized IgG could augment IL-12-induced IFN-g production by STAT4-deficient lymphocytes obtained from lymphoma patients after autologous stem cell transplantation (Figure 2). IL-18 also augmented the in vitro lysis of rituximab-coated Raji cells by human NK cells (Figure 3). These observations that IL-18 can co stimulate IFN-g production and cytolytic activity of NK cells activated through Fc receptors makes it an attractive cytokine to combine with monoclonal antibodies for treatment of cancer. Disclosure: No relevant conflicts of interest to declare.


2011 ◽  
Vol 286 (27) ◽  
pp. 24142-24149 ◽  
Author(s):  
Stefanie Margraf-Schönfeld ◽  
Carolin Böhm ◽  
Carsten Watzl

2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.


Sign in / Sign up

Export Citation Format

Share Document