IMMU-42. OPTIMIZING IMMUNOTHERAPY FOR GLIOMA USING CYTOKINE-ACTIVATED NATURAL KILLER CELLS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi101-vi102
Author(s):  
Amber Kerstetter-Fogle ◽  
Folashade Otegbeye ◽  
David Soler ◽  
Peggy Harris ◽  
Alankrita Raghavan ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy associated with a 12-15 month survival after surgery and radio-chemotherapy. Utilizing adoptive cellular immunotherapy using natural killer (NK) cells has developed over the past two decades for a variety of hematologic malignancies. This approach in solid malignancies is limited by questions of cell dose versus tumor burden, insufficient tumor infiltration, and a tumor microenvironment that suppresses NK cell function. METHODS We isolated NK cells from healthy volunteers and activated them using IL-2, -15, -12, -18, then perform cytotoxic assays in the presence of glioma stem cells. We also tested the efficacy of the NK cells with intracranial delivery in a pre-clinical murine model of glioma. We tested various concentrations of IL-2 and IL-15 on the cytokine culture platform. RESULTS In this study, we demonstrate human NK cells, activated using a cytokine cocktail of interleukins-2, -15, -12, and -18, exert strong cytotoxic events against glioma cell lines. To further examine the efficacy of activated NK cells in vitro, we utilized intracranially xenografted glioma lines and demonstrated a survival benefit with tumor bed injections of these cytokine-activated NK cells (p=0.0089). We were able to confirm that NK cells cultured with low doses (200u IL2; 50ng/ml IL15) of both cytokines are just as effective as higher doses. This is important, as in vivoexhaustion of NK cells stimulated with high doses of either cytokine has been well validated. We also found that low-dose irradiation (4Gy) of glioma cells prior to co-culture with cytokine-activated NK cells promoted increased targeted glioma cell killing within 4 hours(32% cell killing). CONCLUSIONS These findings suggest that in a clinical study, injection of cytokine-activated NK cells into the glioblastoma tumor bed could be used as adjuvant treatment following either stereotactic radiation or surgical resection.

Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Author(s):  
Hila Shaim ◽  
Mayra Hernandez Sanabria ◽  
Rafet Basar ◽  
Fang Wang ◽  
May Daher ◽  
...  

ABSTRACTGlioblastoma, the most aggressive brain cancer, often recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. Here, we show that patient-derived GSCs, but not normal astrocytes, are highly sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. In contrast, single cell analysis of autologous, tissue infiltrating NK cells isolated from surgical samples of high-grade glioblastoma patient tumors using mass cytometry and single cell RNA sequencing revealed an abnormal phenotype associated with impaired lytic function compared with peripheral blood NK cells from GBM patients or healthy donors. This immunosuppression was attributed to an integrin-TGF-β mechanism, activated by direct cell-cell contact between GSCs and NK cells. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-β signaling, or with TGF-β receptor 2 gene-edited NK cells prevented GSC-induced NK cell dysfunction and tumor growth. Collectively, our findings reveal a novel mechanism of NK cell immune evasion by GSCs and implicate the integrin-TGF-β axis as a useful therapeutic target to eliminate GSCs in this devastating tumor.


1980 ◽  
Vol 151 (5) ◽  
pp. 1039-1048 ◽  
Author(s):  
T Haliotis ◽  
J Roder ◽  
M Klein ◽  
J Ortaldo ◽  
AS Fauci ◽  
...  

Natural-killer (NK)-cell function was profoundly depressed in donors homozygous for the Chediak-Steinbrinck-Higashi syndrome (C-HS) gene when compared with age- and sex-matched normals. This apparent defect was not simply a result of a delayed response because little cytolysis was evident in kinetics experiments even after 24 h of incubation. NK cells from C-HS donors failed to lyse adherent (MDA, CEM, and Alab) or nonadherent (K562 and Molt-4) tumor cell lines or nontransformed human fetal fibroblasts. Therefore, the apparent C-HS defect was not a result of a shift in target selectivities. In addition, the depressed reactivity did not appear to be a result of suppressor cells or factors because: (a) enriched NK populations (nonadherent lymphocytes bearing receptors for the Fc portion of IgG) from C-HS donors were low in NK-cell function, (b) C-HS mononuclear cells did not inhibit the cytotoxicity of normal cells in coculture experiments, and (c) cells from the C-HS donors remained poorly reactive even after culture for up to 7 d. The nature of the defective NK activity in C-HS patients is not clear but may lie within the lytic mechanism rather than at the level of the recognition structure or population size because the frequency of target-binding cells was normal. In vitro NK activity could be partially restored by interferon treatment. Combined with the results presented in the following paper (4), these observations suggest that the C-HS gene causes a selective immunodeficiency disorder, mainly involving NK cells. This finding, in conjunction with the high incidence of spontaneous possibly malignant, lymphoproliferative disorders in these patients, may have important implications regarding the theory of immune surveillance mediated by NK cells.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 3022-3027 ◽  
Author(s):  
E de Vries ◽  
HR Koene ◽  
JM Vossen ◽  
JW Gratama ◽  
AE von dem Borne ◽  
...  

We found an unusual fc gamma receptor IIIa (CD16) phenotype on the natural killer (NK) cells of a 3-year-old boy, who suffered from recurrent viral respiratory tract infections since birth. He also had severe clinical problems after Bacille Calmette-Geerin (BCG) vaccination and following Epstein-Barr virus and Varicella Zoster virus infections. His peripheral blood lymphocytes contained a normal percentage and absolute number of CD3-CD7+ cells, which were positively stained with the CD16 monoclonal antibodies (MoAbs) 3G8 and CLBFcRgran1, but did marginally stain with the CD16 MoAb Lau11c/B73.1. Fc gamma RillIb expression on granulocytes appeared to be normal. NK cell function, analyzed in vitro by direct cytotoxicity on K562 target cells and ADCC-activity on P815 target cells, was normal compared with an age-matched healthy control. Sequence analysis of the Fc gamma RIIIA gene, encoding CD16 on NK cells and macrophages, showed a T to A nucleotide substitution at position 230 on both alleles, predicting a leucine (L) to histidine (H) amino acid change position 48 in the first extracellular lg-like domain of Fc gamma RIIIa, which contains the Leu11c/B73.1 epitope. The combined use of CD16 and CD56 MoAbs labeled with the same fluorescent dye, as often applied in routine immunophenotyping procedures, will leave these homozygotes undiagnosed. The pattern of infections in this patient is in agreement with the postulated function of NK cells in the immunological defense against viruses and other intracellular microorganisms. Further analysis of the NK cell function in vitro and follow-up of the clinical course of Fc gamma RIIIA-48H/H homozygotes is required to ascertain whether this genotype is causally related to an NK cell immunodeficiency.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 967
Author(s):  
Benjamin Motais ◽  
Sandra Charvátová ◽  
Zuzana Walek ◽  
Matouš Hrdinka ◽  
Ryszard Smolarczyk ◽  
...  

Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies’ low therapeutic efficiency due to NK cell dysfunctionality in MM patients.


Author(s):  
Dieter Sonntag ◽  
Stephan Sudowe

Natural killer (NK) cells are among the first in defense of the innate immune system by eliminating a variety of abnormal or stressed cells such as cancer cells or virus-infected cells. Individuals who exhibit low cytolytic NK cell activity are believed to be at higher risk of viral infection, tumorigenesis, and various other diseases of the immune system. Therefore, restoration of impaired NK cell function might be an essential step in immunostimulatory therapy of immunocompromised patients. Bacillus firmus is a non-pathogenic gram-positive bacterium of the environment, which possesses various immunomodulatory properties in vitro and in vivo. This retrospective study reports on the effect of B. firmus on the activity of NK cells in vitro. Basal cytolytic NK cell activity against tumor cells among peripheral blood mononuclear cells (PBMCs) of routine patients was determined in a standardized NK cell cytotoxicity assay. The impact of cultivation of PBMCs with B. firmus preparation Bacillus firmus e volumine ex muris cellulae (Bacillus firmus (evc)) 6x on tumor cell killing by NK cells was monitored in relation to basal NK cell activity. This study showed that stimulation of PBMCs with Bacillus firmus (evc) 6x in vitro led to a significant increase in NK cell function. Substantial improvement in cytolytic NK cell activity (more than 1.3-fold of basal activity) was much more pronounced for patients with compromised NK cell function. Due to its immunostimulatory mode of action, Bacillus firmus (evc) may be of particular importance in therapy of patients with NK cell deficiency.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


1982 ◽  
Vol 156 (2) ◽  
pp. 658-663 ◽  
Author(s):  
G Nabel ◽  
W J Allard ◽  
H Cantor

We previously described a cloned cell line that combines information for a unique display of cell surface antigens and specialized function similar to activated natural killer (NK) cells. In addition to conventional cellular targets such as the YAC-1 and MBL-2 lymphomas, this cloned line also lysed lipopolysaccharide-activated B lymphocytes. To determine whether some NK cells can inhibit B cell function, we tested the ability of NK-like clones to suppress Ig secretion in vitro and in vivo. These cloned cells suppressed Ig secretion when they constituted as few as 0.2% of the total cell population and inhibition did not require identity at the H-2 locus. We suggest that some NK cells might recognize non-major histocompatibility complex gene products on activated B lymphocytes and lyse these cells, and this might represent a fundamental cell-cell interaction that regulates antibody secretion by activated B cells.


Sign in / Sign up

Export Citation Format

Share Document