scholarly journals Expression of a Knocked-In AML1-ETO Leukemia Gene Inhibits the Establishment of Normal Definitive Hematopoiesis and Directly Generates Dysplastic Hematopoietic Progenitors

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3134-3143 ◽  
Author(s):  
Tsukasa Okuda ◽  
Zhongling Cai ◽  
Shouli Yang ◽  
Noel Lenny ◽  
Chuhl-joo Lyu ◽  
...  

Abstract The t(8;21)-encoded AML1-ETO chimeric product is believed to be causally involved in up to 15% of acute myelogenous leukemias through an as yet unknown mechanism. To directly investigate the role of AML1-ETO in leukemogenesis, we used gene targeting to create anAML1-ETO “knock-in” allele that mimics the t(8;21). Unexpectedly, embryos heterozygous for AML1-ETO(AML1-ETO/+) died around E13.5 from a complete absence of normal fetal liver–derived definitive hematopoiesis and lethal hemorrhages. This phenotype was similar to that seen following homozygous disruption of either AML1 orCBFβ. However, in contrast to AML1- or CBFβ-deficient embryos, fetal livers from AML1-ETO/+ embryos contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal capacity in vitro. To further document the role of AML1-ETO in these growth abnormalities, we used retroviral transduction to express AML1-ETO in murine adult bone marrow–derived hematopoietic progenitors. AML1-ETO–expressing cells were again found to have an increased self-renewal capacity and could be readily established into immortalized cell lines in vitro. Taken together, these studies suggest that AML1-ETO not only neutralizes the normal biologic activity of AML1 but also directly induces aberrant hematopoietic cell proliferation.

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3134-3143 ◽  
Author(s):  
Tsukasa Okuda ◽  
Zhongling Cai ◽  
Shouli Yang ◽  
Noel Lenny ◽  
Chuhl-joo Lyu ◽  
...  

The t(8;21)-encoded AML1-ETO chimeric product is believed to be causally involved in up to 15% of acute myelogenous leukemias through an as yet unknown mechanism. To directly investigate the role of AML1-ETO in leukemogenesis, we used gene targeting to create anAML1-ETO “knock-in” allele that mimics the t(8;21). Unexpectedly, embryos heterozygous for AML1-ETO(AML1-ETO/+) died around E13.5 from a complete absence of normal fetal liver–derived definitive hematopoiesis and lethal hemorrhages. This phenotype was similar to that seen following homozygous disruption of either AML1 orCBFβ. However, in contrast to AML1- or CBFβ-deficient embryos, fetal livers from AML1-ETO/+ embryos contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal capacity in vitro. To further document the role of AML1-ETO in these growth abnormalities, we used retroviral transduction to express AML1-ETO in murine adult bone marrow–derived hematopoietic progenitors. AML1-ETO–expressing cells were again found to have an increased self-renewal capacity and could be readily established into immortalized cell lines in vitro. Taken together, these studies suggest that AML1-ETO not only neutralizes the normal biologic activity of AML1 but also directly induces aberrant hematopoietic cell proliferation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2272-2272
Author(s):  
Yu Chen ◽  
Yu-Chung Yang

Abstract Cited2 [cAMP-responsive element-binding protein (CBP)/p300-interacting transactivators with glutamic acid (E) and aspartic acid (D)-rich tail 2] is a newly identified transcriptional modulator. Knockout of Cited2 gene is embryonic lethal because of heart and neural tube defects. Cited2 binds directly to CBP and p300, which have been shown to be crucial for hematopoietic stem cell self-renewal and proper hematopoietic differentiation, respectively. Cited2 also induces the expression of a polycomb-group gene, Bmi-1, which is essential for self-renewal of adult hematopoietic stem cells. These connections provided rationale to study the potential role of Cited2 in hematopoiesis. Mouse fetal liver is the major hematopoietic organ from day 10 postcoitus until right before birth. The smaller sized Cited2−/− fetal liver and significantly decreased fetal liver cellularity strongly suggest the potential defect in hematopoiesis. In vitro colony formation assay in methycellulose-based medium was used to characterize the hematopoietic progenitors. We found that fetal liver cells from E13.5, 14.5 and E15.5 Cited2−/− embryos gave rise to much less colonies, which reflects the decreased number and proliferative ability of hematopoietic progenitors due to Cited2 deficiency. Immunostaining of lineage-specific cell surface markers followed by flow cytometry was performed to characterize different hematopoietic populations in E14.5 and E15.5 fetal liver of wild type and Cited2−/− embryos. Cited2−/− fetal liver cells displayed a significant reduction in numbers throughout the hematopoietic hierarchy including hematopoietic stem cells (Lin− c-Kit+ Sca-1+), progenitor cells (Lin− c-Kit+), and differentiated cells of different lineages (CD45+, Ter119+, Mac-1+, Gr-1+), thus revealing a multi-level hematopoietic deficiency of Cited2−/− embryos. Long-term reconstitution experiment was then carried out to measure the ability of hematopoietic stem cells from Cited2−/− fetal liver cells to engraft and reconstitute hematopoietic system of congenic recipient mice. Mice transplanted with Cited2−/− fetal liver cells showed reconstitution of T cells whereas a 2-fold decrease in the reconstitution of B cell and myeloid lineages was observed, indicating a compromised ability of Cited2−/− fetal liver hematopoietic stem cells to maintain hematopoiesis. The results suggest an important role of Cited2 in hematopoietic differentiation and a selective function of Cited2 in B lymphoid &myeloid induction. The underlying mechanisms responsible for these defects will be pursued by microarray analysis of gene expression profile of Cited2−/− fetal liver cells, followed by more detailed phenotypic analyses of B and myeloid lineage markers plus in vitro and in vivo functional assays.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2359-2368 ◽  
Author(s):  
Maria Teresa Corsetti ◽  
Franco Calabi

Abstract Translocations involving the human CBFA2 locus have been associated with leukemia. This gene, originally named AML1, is a human homologue of the Drosophila gene runt that controls early events in fly embryogenesis. To clarify the role of mammalian runt products in normal and leukemic hematopoiesis, we have studied their pattern of expression in mouse hematopoietic tissues in the adult and during ontogeny using an anti-runt box antiserum. In the adult bone marrow, we found expression of runt polypeptides in differentiating myeloid cells and in B lymphocytes. Within the erythroid lineage, runt expression is biphasic, clearly present in the erythroblasts of early blood islands and of the fetal liver, but absent in the adult. Biochemical analysis by Western blotting of fetal and adult hematopoietic populations shows several runt isoforms. At least one of them appears to be myeloid specific.


Blood ◽  
2010 ◽  
Vol 116 (8) ◽  
pp. 1254-1262 ◽  
Author(s):  
Helicia Paz ◽  
Maureen R. Lynch ◽  
Clifford W. Bogue ◽  
Judith C. Gasson

Abstract The development and emergence of the hematopoietic stem cell involves a series of tightly regulated molecular events that are not well characterized. The hematopoietically expressed homeobox (Hhex) gene, a member of the homeobox gene family, is an essential regulator of embryogenesis and hematopoietic progenitor development. To investigate the role of Hhex in hematopoiesis we adapted a murine embryonic stem (ES) cell coculture system, in which ES cells can differentiate into CD41+ and CD45+ hematopoietic progenitors in vitro. Our results show that in addition to delayed hemangioblast development, Hhex−/− ES-derived progeny accumulate as CD41+ and CD41+c-kit+ cells, or the earliest definitive hematopoietic progenitors. In addition, Hhex−/− ES-derived progeny display a significantly reduced ability to develop into mature CD45+ hematopoietic cells. The observed reduction in hematopoietic maturation was accompanied by reduced proliferation, because Hhex−/− CD41+CD45−c-kit+ hematopoietic progenitors accumulated in the G2 phase of the cell cycle. Thus, Hhex is a critical regulator of hematopoietic development and is necessary for the maturation and proliferation of the earliest definitive hematopoietic progenitors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4159-4159
Author(s):  
Francesco Cerisoli ◽  
Letizia Cassinelli ◽  
Giuseppe Lamorte ◽  
Stefania Citterio ◽  
Maria Cristina Magli ◽  
...  

Abstract The hierarchy of transcription factors and signalling molecules involved in hematopoietic development has been dissected through transgenic and knock-out experiments, leading to the identification of several important genes. Less well known are the networks of transcription factors which regulate the activities of the main genes identified. Kit, encoding the membrane receptor of Stem Cell Factor (SCF), is a critical molecule for Hematopoietic Stem Cells (HSC) and some early progenitors, in which it is expressed. In a previous work (Cairns et al., Blood102, 3954;2003), we used mouse lines expressing transgenic Green Fluorescent Protein (GFP) under the control of Kit regulatory elements to investigate Kit regulation in different cell systems such as the hematopoietic and germ cell lineages. We generated a mouse Kit transgene capable of efficiently driving GFP expression both in PGC and in hematopoietic progenitors, such as CFU-Mix and BFU-Es. In the present work, we evaluated the functional efficiency of the same transgene also in HSC residing in the Fetal Liver (FL) and adult Bone Marrow (BM). To test if the construct is expressed in HSC, we transplanted FL or BM cells, fractionated on the basis of Kit expression and the level of GFP fluorescence, into irradiated non-transgenic mice. At the same time, the proportion of hematopoietic progenitors in the various fractions was assessed by in vitro colony assays. Following long term hematological reconstitution, the contribution of transplanted GFP cells was evaluated by the proportion of fluorescent mixed colonies in colture as well as by the proportion of fluorescent bone marrow cells, as assessed by FACS analysis. Long term reconstitution was confirmed by secondary transplants. Results show that the repopulating cells derived from fetal liver and adult bone marrow reside in a fraction of Kit+ cells with intermediate GFP fluorescence level, whereas CFU-Mix and BFU-E are in the highly GFP fluorescent fraction. Furthermore, flow cytometry of fetal liver shows that the intermediate fluorescence fraction is highly enriched in Kit+, Sca1+, CD11b+ cells (the expected HSC immunophenotype), whereas the high fluorescence fraction contains mainly Kit+, Sca1−, CD11b− cells. Similarly, the HSC-enriched tip of the Side Population (SP) of adult bone marrow is highly enriched in Kit+, Sca1+ cells of intermediate GFP fluorescence, whereas the upper part of the SP is enriched in Kit+, Sca1− cells of high GFP fluorescence. Our results indicate that the transgene (and possibly the endogenous Kit gene as well) might be transcribed at relatively low levels in HSC versus other progenitors. Noteworthy, the same transgene is also highly expressed in PGC and in Cardiac Stem Cells (CSC) (Messina et al., Circ. Res. 95,911;2004) and in blastocyst inner mass grown in vitro, indicating that the most 5′ part of the intron (4kb), added to the otherwise inactive promoter might include sites regulating Kit expression in multiple stem cell types.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 730-730 ◽  
Author(s):  
Kathleen E. McGrath ◽  
Jenna M. Cacciatori ◽  
Anne D. Koniski ◽  
James Palis

Abstract In the mouse embryo, hematopoietic function is required by E10.5 (embryonic day 10.5) before adult-repopulating hematopoietic stem cells (HSC) exist. The earliest erythroid function is provided by a wave of primitive erythroid progenitors that arise at E7.5, in association with megakaryocyte and macrophage progenitors. Intriguingly, a second wave of hematopoietic potential arises between the first primitive hematopoietic wave and functional HSC formation. This second progenitor wave also forms in the yolk sac but is distinguished from the primitive wave by its slightly later onset (E8.25), generation of definitive erythroid cells, and its additional association with granulocyte and mast cell progenitors. The proposed function of these “wave 2” progenitors is to colonize the newly formed fetal liver (beginning at E10) and differentiate into the first mature definitive erythroid cells observed in circulation at E12. However, it is unclear how much definitive hematopoiesis arising in the yolk sac recapitulates the paradigm of later HSC-derived myeloid potential, progenitor hierarchy and immunophenotype. To investigate this question, we examined markers of adult myeloid progenitor maturation in the yolk sac and early fetal liver. As previously described by others, all definitive hematopoietic progenitors in the yolk sac, unlike those in the bone marrow, express CD41, which we found associated with Fc gamma receptor expression (FcγR, CD16/32) beginning at E8.5. By E9.5, definitive hematopoietic progenitors can be identified by their surface co-expression of ckit, CD41, FcγR, as well as endoglin. When cultured in vitro, these cells can differentiate into all myeloid lineages, including neutrophils, eosinophils, basophils and mast cells as identified by morphology, immunophenotype and gene expression. Preliminary clonal analysis confirms that a common erythroid/granulocyte progenitor exists in this population. Consistent with adult myelopoiesis, we found a qualitative association of higher FcγR expression with granulocyte fate and higher endoglin expression associated with erythroid fate. However, the unusual co-expression of these four markers and the prevalence of erythroid fate, even in FcγRhi cells, suggest the definitive hematopoietic progenitors in the yolk sac may be quite plastic and highly predisposed to an erythroid fate. Consistent with the concept that these “wave 2” progenitors colonize the fetal liver, we also found similar ckit+CD41+FcγR+endoglin+ cells in the early liver (E11.5) with the potential to produce a variety of myeloid cells when cultured in vitro. The emergence of enucleated definitive erythrocytes by E12, within 24 hours HSC fetal liver colonization, implies that these first erythrocytes are derived from the yolk sac definitive progenitors found in the liver by E10.5. We therefore asked whether the multiple myeloid potentials associated with “wave 2” progenitors are similarily realized the early fetal liver. Beginning at E11.5 we found a population of Gr1+Mac1+ cells in the liver with morphological and histological characteristics of neutrophils, and increase 100-fold in number between E12.5 and E14.5. In contrast, we did not observe eosinophils, basophils or mast cells by morphology, immunophenotype or by RT-PCR for lineage-specific messages. We conclude that complete definitive myeloid potential first arises in the yolk sac from a unique population of ckit+FcγR+CD41+endoglin+ progenitors. Our data suggest that these progenitors then enter the fetal liver and differentiate into a subset of their potential fates producing the first mature definitive erythromyeloid cells. This second wave of hematopoietic progenitors emerging from the yolk sac thus serves as a novel model of mulitpotential definitive hematopoiesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2513-2517 ◽  
Author(s):  
K Hamamura ◽  
H Matsuda ◽  
Y Takeuchi ◽  
S Habu ◽  
H Yagita ◽  
...  

Hematopoiesis requires specific interactions with the microenvironments, and VLA-4 has been implicated in these interactions based on in vitro studies. To study the role of VLA-4 in hematopoiesis in vivo, we performed in utero treatment of mice with an anti-VLA-4 monoclonal antibody. Although all hematopoietic cells in fetal liver expressed VLA-4, the treatment specifically induced anemia. It had no effect on the development of nonerythroid lineage cells, including lymphoids and myeloids. In the treated liver almost no erythroblast was detected, whereas the erythroid progenitors, which give rise to erythroid colonies in vitro, were present. These results indicate that VLA-4 plays a critical role in erythropoiesis, while it is not critical in lymphopoiesis in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document