scholarly journals Granulocyte Colony-Stimulating Factor Upregulates the Vacuolar Proton ATPase in Human Neutrophils

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4598-4601 ◽  
Author(s):  
Hans Niessen ◽  
Grant W. Meisenholder ◽  
Hai-Ling Li ◽  
Stephen L. Gluck ◽  
Beth S. Lee ◽  
...  

Abstract We have previously shown that granulocyte colony-stimulating factor (G-CSF ) delays spontaneous neutrophil apoptosis through activation of the vacuolar proton ATPase (v-ATPase). We have now examined the regulation of the v-ATPase in neutrophils exposed to G-CSF in vitro. When neutrophils were cultivated in the absence of G-CSF, the 57-kD cytosolic B subunit of the v-ATPase disappeared within 1 to 2 hours, its loss preceding the nuclear changes of apoptosis and coinciding with the onset of acidification. By contrast, in neutrophils cultured for 2 hours in the presence of G-CSF, the amount of the 57-kD subunit was similar to that in freshly isolated neutrophils. However, inhibition of protein synthesis with cycloheximide and actinomycin D led to loss of the 57-kD subunit even in the presence of G-CSF. These results indicated that ongoing protein synthesis was required to maintain the v-ATPase, and further suggested that G-CSF acted, at least in part, by maintaining synthesis of the 57-kD cytosolic subunit. G-CSF also promoted the translocation of the 57-and 33-kD cytosolic v-ATPase subunits to the membrane. Our findings suggested two coordinate mechanisms by which the activity of the v-ATPase could be increased by G-CSF: the synthesis of cytosolic v-ATPase subunits and their translocation to the membrane.

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4598-4601 ◽  
Author(s):  
Hans Niessen ◽  
Grant W. Meisenholder ◽  
Hai-Ling Li ◽  
Stephen L. Gluck ◽  
Beth S. Lee ◽  
...  

We have previously shown that granulocyte colony-stimulating factor (G-CSF ) delays spontaneous neutrophil apoptosis through activation of the vacuolar proton ATPase (v-ATPase). We have now examined the regulation of the v-ATPase in neutrophils exposed to G-CSF in vitro. When neutrophils were cultivated in the absence of G-CSF, the 57-kD cytosolic B subunit of the v-ATPase disappeared within 1 to 2 hours, its loss preceding the nuclear changes of apoptosis and coinciding with the onset of acidification. By contrast, in neutrophils cultured for 2 hours in the presence of G-CSF, the amount of the 57-kD subunit was similar to that in freshly isolated neutrophils. However, inhibition of protein synthesis with cycloheximide and actinomycin D led to loss of the 57-kD subunit even in the presence of G-CSF. These results indicated that ongoing protein synthesis was required to maintain the v-ATPase, and further suggested that G-CSF acted, at least in part, by maintaining synthesis of the 57-kD cytosolic subunit. G-CSF also promoted the translocation of the 57-and 33-kD cytosolic v-ATPase subunits to the membrane. Our findings suggested two coordinate mechanisms by which the activity of the v-ATPase could be increased by G-CSF: the synthesis of cytosolic v-ATPase subunits and their translocation to the membrane.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 836-842 ◽  
Author(s):  
Kouji Kusano ◽  
Shinji Ebara ◽  
Koichi Tachibana ◽  
Tadahiro Nishimura ◽  
Susumu Sato ◽  
...  

AbstractGranulocyte colony-stimulating factor (G-CSF) stimulates the proliferation of bone marrow granulocytic progenitor cells and promotes their differentiation into granulocytes. G-CSF is therefore an important component of immune defense against pathogenic microorganisms: recombinant human G-CSF (rhG-CSF) is used to treat patients with a variety of neutropenias. In the present study, we screened approximately 10 000 small nonpeptidyl compounds and found 3 small compounds that mimic G-CSF in several in vitro and in vivo assays. These compounds induced G-CSF–dependent proliferation, but had no effect on interleukin-3–dependent, interleukin-2–dependent, interleukin-10–dependent, thrombopoietin (TPO)–dependent, or erythropoietin (EPO)–dependent proliferation. Each compound induced the phosphorylation of signal transducers and activators of transcription–3 (STAT3) and mitogen-activated protein kinase (MAPK) in a G-CSF–dependent cell line and in human neutrophils. In addition, these compounds induced hematopoietic colony formation from primary rat bone marrow cells in vitro. When subcutaneously injected into normal rats, they caused an increase in peripheral blood neutrophil counts. Furthermore, when they were administered to cyclophosphamide-induced neutropenic rats, blood neutrophil levels increased and remained elevated up to day 8. We therefore suggest that these small nonpeptidyl compounds mimic the activity of G-CSF and may be useful in the treatment of neutropenic patients.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 17-19 ◽  
Author(s):  
N Shirafuji ◽  
S Matsuda ◽  
H Ogura ◽  
K Tani ◽  
H Kodo ◽  
...  

Abstract Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein hormone that specifically stimulates both production and functional activation of neutrophils, while interferon-alpha (IFN-alpha) is known to suppress myelopoiesis, including neutrophil production in vivo and in vitro. On a possibility that IFN-alpha may operate as one of the inhibitory feedback factors in neutropoiesis, we examined whether neutrophils produce IFN-alpha in response to G-CSF. Northern blot analysis showed that messenger RNA (mRNA) for human IFN-alpha 1 became detectable time- dependently in highly purified human neutrophils incubated with purified recombinant human G-CSF (rhG-CSF). But such transcription was not observed either in neutrophils incubated with other neutrophil activators, such as formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharides (LPS), or in blood mononuclear cells incubated with rhG-CSF. In addition, radioimmunoassay for human IFN-alpha showed that its levels in culture medium of the rhG-CSF-treated neutrophils rose markedly (up to approximately 100 IU/mL/1 x 10(7) cells) in a time- dependent way, compared with those of nonstimulated neutrophils. These findings suggest that the G-CSF/IFN-alpha system may participate in the feedback regulatory loop of neutropoiesis.


Blood ◽  
1990 ◽  
Vol 75 (4) ◽  
pp. 851-857 ◽  
Author(s):  
BR Avalos ◽  
JC Gasson ◽  
C Hedvat ◽  
SG Quan ◽  
GC Baldwin ◽  
...  

Abstract Human granulocyte colony-stimulating factor (G-CSF) is a regulatory glycoprotein that stimulates the production of neutrophilic granulocytes from committed hematopoietic progenitor cells both in vitro and in vivo. In this report, we show that biosynthetic (recombinant) human G-CSF enhances colony formation by normal human bone marrow and the human myeloid leukemic cell lines, HL-60 and KG-1, as well as nonhematopoietic small cell lung cancer lines, H128 and H69. G-CSF also modulates multiple differentiated functions of human neutrophils, including enhanced oxidative metabolism in response to f- Met-Leu-Phe (f-MLP), increased antibody-dependent cell-mediated cytotoxicity (ADCC), and augmented arachidonic acid release in response to ionophore and chemotactic agents. These effects are all maximal at a concentration of 100 to 500 pmol/L. Using 125I-labeled recombinant human G-CSF, high affinity binding sites were identified on human neutrophils, the myeloid leukemia cell lines KG-1 and HL-60, and the small cell carcinoma cell lines, H128 and H69. G-CSF receptor numbers ranged between 138 and 285 sites per cell with a kd of 77 to 140 pmol/L, consistent with the concentrations of G-CSF that elicit biologic responses in vitro. Decreased specific binding of 125l-G-CSF by human neutrophils was consistently observed in the presence of excess unlabeled human granulocyte-macrophage colony-stimulating factor (GM-CSF), suggesting competition or down modulation by GM-CSF of the G- CSF receptor.


Blood ◽  
1990 ◽  
Vol 75 (4) ◽  
pp. 851-857 ◽  
Author(s):  
BR Avalos ◽  
JC Gasson ◽  
C Hedvat ◽  
SG Quan ◽  
GC Baldwin ◽  
...  

Human granulocyte colony-stimulating factor (G-CSF) is a regulatory glycoprotein that stimulates the production of neutrophilic granulocytes from committed hematopoietic progenitor cells both in vitro and in vivo. In this report, we show that biosynthetic (recombinant) human G-CSF enhances colony formation by normal human bone marrow and the human myeloid leukemic cell lines, HL-60 and KG-1, as well as nonhematopoietic small cell lung cancer lines, H128 and H69. G-CSF also modulates multiple differentiated functions of human neutrophils, including enhanced oxidative metabolism in response to f- Met-Leu-Phe (f-MLP), increased antibody-dependent cell-mediated cytotoxicity (ADCC), and augmented arachidonic acid release in response to ionophore and chemotactic agents. These effects are all maximal at a concentration of 100 to 500 pmol/L. Using 125I-labeled recombinant human G-CSF, high affinity binding sites were identified on human neutrophils, the myeloid leukemia cell lines KG-1 and HL-60, and the small cell carcinoma cell lines, H128 and H69. G-CSF receptor numbers ranged between 138 and 285 sites per cell with a kd of 77 to 140 pmol/L, consistent with the concentrations of G-CSF that elicit biologic responses in vitro. Decreased specific binding of 125l-G-CSF by human neutrophils was consistently observed in the presence of excess unlabeled human granulocyte-macrophage colony-stimulating factor (GM-CSF), suggesting competition or down modulation by GM-CSF of the G- CSF receptor.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 270-276 ◽  
Author(s):  
Eva-Maria Boneberg ◽  
Lars Hareng ◽  
Florian Gantner ◽  
Albrecht Wendel ◽  
Thomas Hartung

In a double-blind, placebo-controlled, randomized study, 10 healthy men received either a single dose of 480 μg granulocyte colony-stimulating factor (G-CSF) or saline. Blood taken from the volunteers was stimulated with 10 μg/mL endotoxin and released cytokines were measured by enzyme-linked immunosorbent assay. Expression of G-CSF receptors on leukocytes was examined by flow cytometry and reverse transcriptase-polymerase chain reaction. Functional activity of these receptors was tested by challenging isolated leukocyte populations to release cytokines with endotoxin in the presence of G-CSF. The G-CSF treatment attenuated the release of the proinflammatory cytokines tumor necrosis factor (TNF)-, interleukin (IL)-12, IL-1β, and interferon (IFN)-γ in ex vivo lipopolysaccharide (LPS)-stimulated whole blood. In blood from untreated volunteers the presence of G-CSF in vitro also attenuated the LPS-stimulated release of these cytokines. G-CSF in vitro also attenuated TNF- release from elutriation-purified monocytes. In the presence of 10 ng/mL recombinant TNF-, the attenuation of LPS-inducible IFN-γ release by G-CSF was blunted in whole blood. However, G-CSF had no such effect on IFN-γ release from isolated lymphocytes stimulated with anti-CD3 or a combination of TNF- and IL-12. G-CSF receptor expression was detected in human neutrophils and monocytes but not in lymphocytes by means of RT-PCR as well as flow cytometry. These results indicate that G-CSF receptors expressed on monocytes are functional in modulating monokine release. We conclude that the attenuation of IFN-γ release from lymphocytes is not a direct effect of G-CSF on these cells but is rather due to the inhibition of monocytic IL-12 and TNF- release by G-CSF. (Blood. 2000;95:270-276)


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2099-2107
Author(s):  
Solveig G. Ericson ◽  
Yue Zhao ◽  
Huilan Gao ◽  
Kathryn L. Miller ◽  
Laura F. Gibson ◽  
...  

Polymorphonuclear neutrophils (PMNs) are essential effector cells in host defense and tissue inflammatory responses. These responses may be initiated after cross-linking of cell surface Fc receptors that bind the constant portion of IgG (FcγR). We evaluated the effect of cross-linking FcγRI or FcγRII on interleukin-6 (IL-6) production by purified PMNs from normal donors or from patients being treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF). In PMNs from normal donors, IL-6 mRNA was detected by reverse transcriptase-polymerase chain reaction only after FcγRI or FcγRII cross-linking. We also found that IL-6 mRNA could be detected in PMNs after either in vitro or in vivo rhG-CSF treatment in the absence of FcγR cross-linking. IL-6 protein was found to be produced intracellularly and secreted by PMNs after cross-linking FcγRI or FcγRII or after rhG-CSF stimulation. Cross-linking FcγRI or FcγRII on PMNs from patients treated with rhG-CSF resulted in a synergistic increase in IL-6 secretion. Upregulation of IL-6 production by PMNs after rhG-CSF treatment may contribute to a clinical engraftment syndrome that occurs during periods of rapid increase in PMN numbers in patients receiving rhG-CSF.


Sign in / Sign up

Export Citation Format

Share Document