scholarly journals Interleukin-15 (IL-15) Induces IL-8 and Monocyte Chemotactic Protein 1 Production in Human Monocytes

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2804-2809 ◽  
Author(s):  
Raffaele Badolato ◽  
Alessandro Negro Ponzi ◽  
Maura Millesimo ◽  
Luigi D. Notarangelo ◽  
Tiziana Musso

Interleukin-15 (IL-15) is a recently characterized cytokine that shares many biological activities with IL-2 and interacts with the β and γ components of the IL-2 receptor. Unlike IL-2, which is secreted only by T cells, IL-15 is expressed preferentially by nonlymphoid tissues, epithelial, and fibroblast cell lines and by activated monocytes/macrophages. High concentrations of IL-15 have been shown in inflamed joints of rheumatoid arthritis patients, suggesting a role for IL-15 in inflammatory diseases where there is recruitment of leukocytes. Although monocytes have been shown to bind IL-15, its effects on these cells are not defined. In this report we show that supernatants of monocytes treated with IL-15–contained chemotactic activity for neutrophils and monocytes which was neutralized by anti-IL-8 or by anti-monocyte chemotactic protein 1 (MCP-1) antibodies, respectively. Secretion of IL-8 and MCP-1 proteins is detectable by enzyme-linked immunosorbent assay as early as 6 hours after stimulation with IL-15. Production of the two chemokines is correlated with induction by IL-15 of mRNA expression in monocytes. In addition, IL-8 and MCP-1 induction by IL-15 is differently regulated by interferon-γ (IFN-γ) and IL-4. IFN-γ inhibited IL-15–induced IL-8 secretion, but synergized with IL-15 in MCP-1 induction; whereas IL-4 inhibited both IL-8 and MCP-1 induction by IL-15. These results show that IL-15 can stimulate monocytes to produce chemokines that cause inflammatory cell accumulation. Thus, IL-15 locally produced at sites of inflammation may play a pivotal role in the regulation of the leukocyte infiltrate.

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2804-2809 ◽  
Author(s):  
Raffaele Badolato ◽  
Alessandro Negro Ponzi ◽  
Maura Millesimo ◽  
Luigi D. Notarangelo ◽  
Tiziana Musso

Abstract Interleukin-15 (IL-15) is a recently characterized cytokine that shares many biological activities with IL-2 and interacts with the β and γ components of the IL-2 receptor. Unlike IL-2, which is secreted only by T cells, IL-15 is expressed preferentially by nonlymphoid tissues, epithelial, and fibroblast cell lines and by activated monocytes/macrophages. High concentrations of IL-15 have been shown in inflamed joints of rheumatoid arthritis patients, suggesting a role for IL-15 in inflammatory diseases where there is recruitment of leukocytes. Although monocytes have been shown to bind IL-15, its effects on these cells are not defined. In this report we show that supernatants of monocytes treated with IL-15–contained chemotactic activity for neutrophils and monocytes which was neutralized by anti-IL-8 or by anti-monocyte chemotactic protein 1 (MCP-1) antibodies, respectively. Secretion of IL-8 and MCP-1 proteins is detectable by enzyme-linked immunosorbent assay as early as 6 hours after stimulation with IL-15. Production of the two chemokines is correlated with induction by IL-15 of mRNA expression in monocytes. In addition, IL-8 and MCP-1 induction by IL-15 is differently regulated by interferon-γ (IFN-γ) and IL-4. IFN-γ inhibited IL-15–induced IL-8 secretion, but synergized with IL-15 in MCP-1 induction; whereas IL-4 inhibited both IL-8 and MCP-1 induction by IL-15. These results show that IL-15 can stimulate monocytes to produce chemokines that cause inflammatory cell accumulation. Thus, IL-15 locally produced at sites of inflammation may play a pivotal role in the regulation of the leukocyte infiltrate.


Gut ◽  
1998 ◽  
Vol 43 (5) ◽  
pp. 620-628 ◽  
Author(s):  
G Monteleone ◽  
T Parrello ◽  
F Luzza ◽  
F Pallone

Background/Aim—Interleukin (IL) 12 is involved in the mucosal response during intestinal inflammation but its role is not fully understood. The response of human lamina propria T lymphocytes (T-LPL) to IL-12 in terms of interferon γ (IFN-γ) release and proliferation was investigated, exploring whether IL-15 and IL-7 cooperate with IL-12. The role of accessory molecules (CD2 and CD28) was also investigated.Methods—Unstimulated and phytohaemagglutinin preactivated T-LPL cultures were incubated with or without the initial addition of cytokines, anti-CD2 or anti-CD28 antibodies. IFN-γ mRNA was detected by reverse transcriptase polymerase chain reaction, and protein secretion was measured by enzyme linked immunosorbent assay (ELISA).Results—IFN-γ mRNA was induced in T-LPLs by IL-12 and IL-15 but not IL-7, whereas IFN-γ was measured only in IL-12 stimulated T-LPL cultures. IL-12 induced IFN-γ release was not abrogated by neutralising anti-IL-2 antibody or by cyclosporin A. IL-12 synergised with either anti-CD2 or anti-CD28 antibodies in inducing IFN-γ synthesis. In preactivated T-LPLs, IL-7 enhanced IFN-γ release induced by both IL-12 and anti-CD2, whereas IL-15 potentiated only IL-12 induced IFN-γ synthesis. IL-12 did not induce proliferation of either unstimulated or preactivated T-LPLs and it did not enhance the CD2/CD28 stimulated T-LPL proliferative response. No transcript for IL-12 receptor β1 subunit was detected in freshly isolated and activated T-LPLs whereas the β2subunit mRNA was consistently found in T-LPL samples.Conclusions—IL-12 induces human T-LPLs to produce and release IFN-γ, and IL-15 and IL-7 cooperate with IL-12 in expanding the IFN-γ mucosal response.


2013 ◽  
Vol 34 (6) ◽  
pp. 619-624 ◽  
Author(s):  
Antonino Catanzaro ◽  
Charles Daley

Studies over the past several decades have dramatically increased our understanding of the immune response to Mycobacterium tuberculosis infection, and advances in proteomics and genomics have led to a new class of immune-diagnostic tests, termed interferon-γ (IFN-γ) release assays (IGRAs), which appear to obviate many of the problems encountered with the tuberculin skin test (TST). Worldwide, 2 IGRAs are currently commercially available. QuantiFERON-TB Gold In-Tube (Cellestis) is a third-generation product that uses an enzyme-linked immunosorbent assay to measure IFN-γ generated in whole blood stimulated with M. tuberculosis–specific antigens. T-Spot-TB (Oxford Immunotec) employs enzyme-linked immunosorbent spot technology to enumerate the number of purified lymphocytes that respond to M. tuberculosis–specific antigens by producing IFN-γ. These in vitro tests measure the host immune response to M. tuberculosis–specific antigens, which virtually eliminates false-positive cross reactions caused by bacillus Calmette-Guérin vaccination and/or exposure to environmental nontuberculous mycobacteria that plague the interpretation and accuracy of the tuberculin skin test (TST). The high specificity of IGRAs, together with sensitivity commensurate with or better than that of the TST, promises an accurate diagnosis and the ability to focus tuberculosis-control activities on those who are actually infected with M. tuberculosis. The Third Global Symposium was held over a 3-day period and was presented by the University of California, San Diego, Continuing Medical Education department; slides and sound recordings of each presentation are available at http://cme.ucsd.edu/igras/syllabus.html. A moderated discussion is also available at http://cme.ucsd.edu/igrasvideo. This document provides a summary of the key findings of the meeting, specifically focusing on the use of IGRAs in screening healthcare worker populations.


2002 ◽  
Vol 11 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Vera L. Petricevich

The purpose of this study was to investigate the effects ofTityus serrulatusvenom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including anin vitromodel for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-γ (IFN-γ) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functionsin vitro.


1995 ◽  
Vol 83 (6) ◽  
pp. 1038-1044 ◽  
Author(s):  
Terry Lichtor ◽  
Roberta P. Glick ◽  
Tae Sung Kim ◽  
Roger Hand ◽  
Edward P. Cohen

✓ A novel approach toward the treatment of glioma was developed in a murine model. The genes for both interleukin-2 (IL-2) and interferon-γ (IFN-γ) were first transfected into a mouse fibroblast cell line that expresses defined major histocompatibility complex (MHC) determinants (H—2k). The double cytokine—secreting cells were then cotransplanted intracerebrally with the Gl261 murine glioma cell line into syngeneic C57BL/6 mice (H—2b) whose cells differed at the MHC from the cellular immunogen. The results indicate that the survival of mice with glioma injected with the cytokine-secreting allogeneic cells was significantly prolonged, relative to the survival of mice receiving equivalent numbers of glioma cells alone. Using a standard 51Cr-release assay, the specific release of isotope from labeled Gl261 cells coincubated with spleen cells from mice injected intracerebrally with the glioma cells and the cytokine-secreting fibroblasts was significantly higher than the release of isotope from glioma cells coincubated with spleen cells from nonimmunized mice. The cellular antiglioma response was mediated by natural killer/lymphokine-activated killer and Lyt-2.2+ (CD8+) cells. The increased survival of mice with glioma and the specific immunocytotoxic responses after immunization with fibroblasts modified to secrete both IL-2 and IFN-γ indicate the potential of an immunotherapeutic approach to gliomas with cytokine-secreting cells.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elaine Mai ◽  
Joyce Chan ◽  
Levina Goon ◽  
Braeden K. Ego ◽  
Jack Bevers ◽  
...  

Abstract Background Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. Results We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. Conclusions Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


2002 ◽  
Vol 30 (02n03) ◽  
pp. 215-223 ◽  
Author(s):  
Tsutomu Nakada ◽  
Kenji Watanabe ◽  
Guang-Bi Jin ◽  
Kazuo Toriizuka ◽  
Toshihiko Hanawa

Ninjin-Youei-To (NYT; Ren-Shen-Yang-Rong-Tang in Chinese) is a traditional herbal formula, which is widely used in Japan, Korea and China to modulate physiological immunity. The effects of oral administration of NYT on cytokine production from splenocytes were investigated in both C57BL/6 and BALB/c mice in which Th1 and Th2 were dominant, respectively. Splenocytes from C57BL/6 and BALB/c mice, which took NYT orally for four weeks, were cultured with anti-mouse CD3 mAb, and the supernatant was examined for cytokine production using enzyme-linked immunosorbent assay (ELISA). Administration of NYT to C57BL/6 mice, increased the production of interleukin-4 (IL-4) significantly, and slightly decreased interferon-γ (IFN-γ) production from splenocytes. In contrast, the same treatment significantly increased IFN-γ secretion from splenocytes of BALB/c mice. No remarkable changes of IL-12 production from splenocytes were observed in either strain of mice. These results suggest that oral administration of NYT ameliorates the excessive inclination of Th1 and Th2 type cytokine production, and NYT may provide a beneficial effects for the treatment of diseases caused by a skewed Th1-Th2 balance in the immune system.


2020 ◽  
Vol 15 (5) ◽  
pp. 18-23
Author(s):  
G.P. Evseeva ◽  
◽  
G.N. Kholodok ◽  
S.V. Pichugina ◽  
S.V. Suprun ◽  
...  

Principles of the diagnosis and treatment of community-acquired pneumonia (CAP) in children were developed and clearly formulated long ago. Nevertheless, clinicians often encounter the problem of pulmonary and pleural complications of CAP, which is challenging in terms of the choice of initial therapy, since the first symptoms of uncomplicated and complicated pneumonia are often similar. Therefore, the search for early markers of complicated CAP in children is highly important. Objective. To assess prognostic values of spontaneous and mitogen-induced cytokine production in children with CAP. Patients and methods. We have performed comprehensive examination of 108 children with CAP. Eighty-four of them had uncomplicated CAP, whereas 24 children had CAP complicated by pleurisy. We measured spontaneous and induced production of the following cytokines upon patient admission to hospital: interleukin-1 (IL-1), interleukin-17 (IL-17), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1). To measure induced cytokine production, we stimulated peripheral blood lymphocytes by S. рneumonае (serotype 7, 11; strains 7C and 11AD). The level of cytokines was evaluated using the enzyme-linked immunosorbent assay (Vektor-BEST, Novosibirsk, Russia). Results. We found that in children with uncomplicated CAP, induction of immunocompetent blood cells (IBCs) led to increased secretion of first-generation cytokines, including IL-1, TNF-α, and IFN-γ, whereas IBCs of patients with complicated CAP primarily produced second-generation cytokines, including VEGF, МРС-1, and IL-17. Conclusion. The observed differences in spontaneous and mitogen-induced cytokine production between children with and without CAP complications suggest that these parameters can be considered as promising prognostic markers for complicated CAP in children. The proposed method can be used in pediatric practice to predict the development of complications in children with CAP. Key words: children, community-acquired pneumonia, cytokines


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Qilu Liu ◽  
Shengxiang Xiao ◽  
Yumin Xia

Tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) participates in multiple biological activities via binding to its sole receptor—fibroblast growth factor-inducible 14 (Fn14). The TWEAK/Fn14 signaling pathway is activated in skin inflammation and modulates the inflammatory responses of keratinocytes by activating nuclear factor-κB signals and enhancing the production of several cytokines, including interleukins, monocyte chemotactic protein-1, RANTES (regulated on activation, normal T cell expressed and secreted), and interferon gamma-induced protein 10. Mild or transient TWEAK/Fn14 activation contributes to tissular repair and regeneration while excessive or persistent TWEAK/Fn14 signals may lead to severe inflammatory infiltration and tissue damage. TWEAK also regulates cell fate of keratinocytes, involving the function of Fn14-TNF receptor-associated factor-TNF receptor axis. By recruiting inflammatory cells, promoting cytokine production, and regulating cell fate, TWEAK/Fn14 activation plays a pivotal role in the pathogenesis of various skin disorders, such as psoriasis, atopic dermatitis, cutaneous vasculitis, human papillomavirus infection and related skin tumors, and cutaneous autoimmune diseases. Therefore, the TWEAK/Fn14 pathway may be a potential target for the development of novel therapeutics for skin inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document