The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice

Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3289-3296 ◽  
Author(s):  
Amnon Peled ◽  
Orit Kollet ◽  
Tanya Ponomaryov ◽  
Isabelle Petit ◽  
Suzanna Franitza ◽  
...  

Abstract Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen–4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen–1 (LFA-1). Treatment of human CD34+cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti–LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34+ cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule–1) and VLA-4/VCAM-1 (vascular adhesion molecule–1). Furthermore, SDF-1–induced polarization and extravasation of CD34+/CXCR4+ cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.

Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3289-3296 ◽  
Author(s):  
Amnon Peled ◽  
Orit Kollet ◽  
Tanya Ponomaryov ◽  
Isabelle Petit ◽  
Suzanna Franitza ◽  
...  

Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen–4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen–1 (LFA-1). Treatment of human CD34+cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti–LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34+ cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule–1) and VLA-4/VCAM-1 (vascular adhesion molecule–1). Furthermore, SDF-1–induced polarization and extravasation of CD34+/CXCR4+ cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4253-4253
Author(s):  
Shmuel Yaccoby ◽  
Kenichiro Yata ◽  
Yun Ge ◽  
Bart Barlogie ◽  
Joshua Epstein ◽  
...  

Abstract Recent studies indicate that osteoblasts play an important role in maintaining hematopoietic stem cells (HSCs) niche in the bone marrow microenvironment. The aim of study was to test the effect of osteoclasts on the fate of HSCs in a long term co-culture assay. To generate osteoclasts, peripheral blood mononuclear cells from mobilized donors were cultured for 6–10 days in αMEM media supplemented with 10% FCS, M-CSF and RANKL. After removal of non-adherent cells, the cultures contained 95% multinucleated osteoclasts and their precursors. These osteoclasts expressed TRAP and formed resorption pits on bone slices (Yaccoby et al., Cancer Res., 2004). CD34+ cells were purified from donor PBSCs and cord blood using immunomagnetic beads separation (>95% purity). Adult and cord blood HSCs were co-cultured with osteoclasts for up to 3 and 10 months, respectively, in media lacking any cytokines. Because osteoclasts do not survive long without M-CSF and RANKL, the HSCs were transferred to fresh osteoclast cultures every 6–10 days. Unlike their tight adherence to stromal cells, HSCs did not adhere to the osteoclasts and were easily recovered from co-cultures by gentle pipetting. Following 1 to 3 weeks of co-culture, committed HSCs rapidly differentiated into various hematopoietic cell lineage, followed by phagocytosis of terminal differentiated hematopoietic cells by the osteoclasts. The remaining HSCs were highly viable (>90% by trypan blue exclusion) and gradually lost their CD34 expression, so that the cultures contained subpopulations of HSCs expressing CD34−/lowCD38+ and CD34−/lowCD38−. Quantitive real time RT-PCR (qRT-PCR) revealed loss of expression of CD34 and reduced expression of CD45 by HSCs co-cultured with osteoclasts longer than 6 weeks. Variable expression of CD34 on HSCs was previously reported in murine but not human HSCs (Tajima et al., Blood, 2001). The co-cultured HSCs showed reduced capacity of generating in vitro hematopoietic colonies, and did not differentiate into osteoclasts upon stimulation with M-CSF and RANKL. We next tested the long term engraftment of these co-cultured HSCs in 2 animal models. In the first model, cord blood and adult HSCs from 2 donors recovered after >6 weeks in co-culture were injected I.V. into irradiated NOD/SCID mice. In the second novel model, co-cultured cord blood and adult HSCs from 2 donors were injected directly into rabbit bones implanted subcutaneously in SCID mice (SCID-rab model), 6–8 weeks after rabbit bone implantation. After 2–4 months, 10%±3% human CD45-expressing cells were identified in the NOD/SCID mice femora and 8%±4% in the SCID-rab mice rabbit bone. Our study suggests that osteoclasts promote rapid differentiation of committed HSCs and induce conversion of CD34+ cells to CD34− stem cells with self renewal potential. Intriguingly, long term co-culture of primary CD138-selected myeloma plasma cells (n=16) with osteoclasts resulted in dedifferentiation of tumor cells from a mature CD45− phenotype to an immature, CD45-expressing cells, suggesting a common mechanism of osteoclast-induced HSC and myeloma cell plasticity. This indicates that osteoclasts are important bone marrow component regulating human HSC niche, plasticity and fate.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4208-4208
Author(s):  
Hiroto Araki ◽  
Nadim Mahmud ◽  
Mohammed Milhem ◽  
Mingjiang Xu ◽  
Ronald Hoffman

Abstract The fixed number of hematopoietic stem cells (HSCs) within a single cord blood (CB) unit has limited the use of CB grafts for allogeneic transplantation in adults. Efforts to promote self-renewal and expansion of HSCs have been met with limited success. Using presently available ex-vivo culture techniques HSCs lose their functional properties in proportion to the number of cellular divisions they have undergone. We hypothesized that chromatin modifying agents, 5-aza-2′-deoxycytidine (5azaD) and histone deacetylase inhibitor, trichostatin A (TSA) could reactivate pivotal genes required for retaining the functional properties of dividing HSC. We have demonstrated previously that the fate of human bone marrow CD34+ cells could be altered by the addition of 5azaD/TSA (Milhem et al. Blood.2004;103:4102). In our current studies we hypothesized that in vitro exposure of CB CD34+ cells to chromatin modifying agents might lead to optimal HSC expansion to permit transplantation of adults. A 12.5-fold expansion was observed in the 5azaD/TSA treated CD34+CD90+ cell cultures containing SCF, thrombopoietin and FLT3 ligand (cytokines) in comparison to the input cell number. Despite 9 days of culture, 35.4% ± 5.8% (n = 10) of the total cells in the cultures exposed to chromatin modifying agents were CD34+CD90+ as compared to 1.40 % ± 0.32% in the culture containing cytokines alone. The 12.5-fold expansion of CD34+CD90+ cells was associated with a 9.8-fold increase in the numbers of CFU-mix and 11.5-fold expansion of cobblestone area-forming cells (CAFC). The frequency of SCID repopulating cells (SRC) was 1 in 26,537 in primary CB CD34+CD90+ cells but was increased to 1 in 2,745 CD34+CD90+ cells following 9 days of culture in the presence of 5azaD/TSA resulting in a 9.6-fold expansion of the absolute number of SRC. In contrast, the cultures lacking 5azaD/TSA had a net loss of both CFC/CAFC as well as SRC. The expansion of cells maintaining CD34+CD90+ phenotype was not due to the retention of a quiescent population of cells since all of the CD34+CD90+ cells in the culture had undergone cellular division as demonstrated by labeling with a cytoplasmic dye. CD34+CD90+ cells that had undergone 5–10 cellular divisions in the presence of 5azaD/TSA but not in the absence still retained the ability to repopulate NOD/SCID mice. 5azaD/TSA treated CD34+CD90+ cells, but not CD34+CD90- cells were responsible for in vivo hematopoietic repopulation of NOD/SCID assay, suggesting a strong association between CD34+CD90+ phenotype and their ability to repopulate NOD/SCID mice. We next assessed the effect of 5azaD/TSA treatment on the expression of HOXB4, a transcription factor which has been implicated in HSC self-renewal. A significantly higher level of HOXB4 protein was detected by western blot analysis after 9 days of culture in the cells treated with 5azaD/TSA as compared to cells exposed to cytokines alone. The almost 10-fold increase in SRC achieved using the chromatin modifying agents should be sufficient to increase the numbers of engraftable HSC within a single human CB unit so as to permit these expanded grafts to be routinely used for transplanting adult recipients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3178-3178
Author(s):  
Toshinao Kawai ◽  
Uimook Choi ◽  
Po-Ching Liu ◽  
Harry L. Malech

Abstract CD26/DPP-IV (CD26) is a membrane-anchored ectoenzyme with N terminus exopeptidase activity that cleaves X-Pro-dipeptides. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 play a central role in trafficking of hematopoietic stem cells in the bone marrow. SDF-1 has a proline second from the N-terminus and is cleaved by CD26. Mouse hematopoietic progenitors express CD26 and a brief treatment of these cells with Diprotin A (Ile-Pro-Ile), a specific inhibitor of CD26, enhances engraftment. We examined the effect of Diprotin A treatment of peripheral blood human CD34+ stem cells (PBSC) with respect to subsequent responses to SDF-1 and with respect to engraftment in the NOD/SCID mouse xenograft model. We found that human CD34+ PBSC with colony forming potential are unlike mouse hematopoietic stem cells in that they lack the equivalent of CD26; and also are unlike mouse cells in that their response to SDF-1 and their engraftment in the NOD/SCID xenograft model are not affected by pre-treatment with Diprotin A. However, administration of Diprotin A intravenously to the NOD/SCID mouse at the time of transplant of human PBSC greatly enhances engraftment of the human PBSC, suggesting an effect primarily on the mouse stroma. Previous reports suggested that 70% of mouse lineage negative/sca-1 positive hematopoietic stem cells express CD26. However, freshly selected mobilized human CD34+ PBSC do not express detectable CD26, though after 4 days and 7 days of ex vivo culture in growth factors (SCF, flt3-ligand, TPO, IL3) 8.9% and 26.6% of cells express CD26, indicating that CD26 may only appear in later progenitors. At day 4 the cultured human PBSC were sorted by flow cytometry into CD26 positive and negative fractions. Only the CD26 negative fraction contained colony forming cells. 4 day-cultured human PBSC were exposed to Diprotin A 5mM for 15 minutes, washed and used in a filter transwell migration assay in response to SDF-1 at concentrations from 0.5 to 10 nM. There was no statistical difference between migration of Diprotin A treated and control PBSC, even in experiments with longer treatment with Diprotin A. When these human PBSC were transplanted into NOD/SCID mice there was no difference of engraftment between the Diprotin A treated group and control group. However, when 1x106 of 4 day-cultured PBSC were injected into NOD/SCID mice without or together with 2μmol of Diprotin A, there was a profound enhancement on subsequent engraftment in the group of mice injected with Diprotin A at time of transplant. At 6 weeks after transplantation the CD45+ human cell engraftment of the Diprotin A group was 6-fold increased compared to control group (49.6±8.2% vs. 8.1 ± 3.4%, p<.0001). Taken together with the colony assay, the in vitro migration studies, and lack of effect on engraftment when only the human PBSC are treated with Diprotin A, this result suggests that the enhanced engraftment of human PBSC in NOD/SCID mice is due to an action of Diprotin A on endogenous mouse CD26/DPP-IV (where the target is unknown, but possibly stromal cells). Although, further work is required to determine levels of expression of CD26/DPP-IV in human marrow stromal cells, it is possible to speculate that inhibitors of CD26/DPP-IV activity may provide a novel approach to improve stem cell engraftment in humans.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4622-4622
Author(s):  
Nadja Grund ◽  
Patrick Maier ◽  
Uwe Appelt ◽  
Heike Allgayer ◽  
Frederik Wenz ◽  
...  

Abstract Hematologic side effects of cancer chemotherapy like myelosuppression are frequently dose-limiting. Lentiviral gene therapy with cytostatic drug resistance gene transfer to human hematopoietic stem cells (CD34+) is a promising approach to overcome this problem. In this context it is of interest if chemotherapy mediated selection has an impact on lentiviral integration site patterns of transduced hematopoietic stem cells (CD34+). Concerning this issue, human CD34+ cells transduced with a lentiviral self-inactivating (SIN) vector encoding MGMTP140K (the O6-BG resistant mutant of O6-methylguanine- DNA methyltransferase) were in vitro treated with the alkylating agent BCNU. For integration site analysis LM-PCR was performed and integration patterns of the treated and untreated CD34+ cells were analyzed and compared with an in silico set of 106 random integrations. We found different integration preferences of the lentiviral vector between either the treated (82 integrations) or the untreated (30 integrations) CD34+ cells and the in silico set: both groups showed chromosomal preferences, a significant bias for integrations in genes (74,4% in the treated, respectively 70% in the untreated to 40% in the in silico group), especially by favouring introns, a random integration distribution regarding transcription start sites (TSS), and most importantly no significant differences concerning the number of integrations in or near cancer genes. Concerning all integration characteristics we could not find significant differences when comparing the untreated with the treated group. In conclusion, the general distribution of lentiviral integrations in either untreated or treated human CD34+ cells showed no distinct differences between both groups but significant differences compared to the in silico integration set. These results suggest that chemoselection of cells lentivirally overexpressing a specific chemoresistence gene might not influence the integration pattern. Therefore chemotherapy pressure seems not to hamper the safety of lentiviral vectors in gene transfer studies.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Mo A. Dao ◽  
Jesusa Arevalo ◽  
Jan A. Nolta

Abstract The cell surface protein CD34 is frequently used as a marker for positive selection of human hematopoietic stem/progenitor cells in research and in transplantation. However, populations of reconstituting human and murine stem cells that lack cell surface CD34 protein have been identified. In the current studies, we demonstrate that CD34 expression is reversible on human hematopoietic stem/progenitor cells. We identified and functionally characterized a population of human CD45+/CD34− cells that was recovered from the bone marrow of immunodeficient beige/nude/xid (bnx) mice 8 to 12 months after transplantation of highly purified human bone marrow–derived CD34+/CD38− stem/progenitor cells. The human CD45+ cells were devoid of CD34 protein and mRNA when isolated from the mice. However, significantly higher numbers of human colony-forming units and long-term culture-initiating cells per engrafted human CD45+ cell were recovered from the marrow of bnx mice than from the marrow of human stem cell–engrafted nonobese diabetic/severe combined immunodeficient mice, where 24% of the human graft maintained CD34 expression. In addition to their capacity for extensive in vitro generative capacity, the human CD45+/CD34− cells recovered from thebnx bone marrow were determined to have secondary reconstitution capacity and to produce CD34+ progeny following retransplantation. These studies demonstrate that the human CD34+ population can act as a reservoir for generation of CD34− cells. In the current studies we demonstrate that human CD34+/CD38− cells can generate CD45+/CD34− progeny in a long-term xenograft model and that those CD45+/CD34− cells can regenerate CD34+ progeny following secondary transplantation. Therefore, expression of CD34 can be reversible on reconstituting human hematopoietic stem cells.


Blood ◽  
1996 ◽  
Vol 88 (6) ◽  
pp. 1944-1950 ◽  
Author(s):  
W Terpstra ◽  
RE Ploemacher ◽  
A Prins ◽  
K van Lom ◽  
K Pouwels ◽  
...  

A subset of leukemic cells is assumed to maintain long-term growth of acute myeloid leukemia (AML) in vivo. Characterization of these AML progenitor cells may further define growth properties of human leukemia. In vitro incubations with 5-fluorouracil (5-FU) have been used for enrichment of normal primitive hematopoietic stem cells. By analogy to normal hematopoiesis, it was hypothesized that primitive leukemic stem cells might be kinetically more inactive than colony- forming cells (colony-forming units-AML [CFU-AML]). To examine this hypothesis, conditions were established for incubation with 5-FU that eliminated all CFU-AML. These conditions selected a 5-FU-resistant AML fraction that was evaluated for its capacity for long-term growth by transplantation into mice with severe combined immunodeficiency (SCID) and long-term culture in the quantitative cobblestone area-forming cell (CAFC) assay. Transplantation of the 5-FU-resistant fraction of four cases of AML into SCID mice resulted in growth of AML. Whereas no CFU- AML survived, 31% to 82% of primitive (week-6) CAFC were recovered from the 5-FU-treated cells. Hematopoietic cells proliferating in the CAFC assay were shown to be leukemic by cytologic, cytogenetic, or molecular analysis. The reduction of AML growth as determined by outgrowth of AML in SCID mice was in the same order of magnitude as the primitive (week- 6) CAFC reduction. This indicates that both assays measure closely related cell populations and that the CAFC assay can be used to study long-term growth of AML. These results show a hierarchy of AML cells that includes 5-FU-resistant progenitors. These cells are characterized as primitive (week-6) CAFC and as leukemia-initiating cells in SCID mice.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3214-3214 ◽  
Author(s):  
David A. Hess ◽  
Phillip E. Herrbrich ◽  
Louisa Wirthlin ◽  
Timothy P. Craft ◽  
Jan A. Nolta

Abstract The successful development of stem cell-based therapies requires a thorough understanding of human hematopoietic stem cell (HSC) populations. Human CD34− cells engraft NOD/SCID mice with low efficiency by intravenous (IV) transplant. However, intra-femoral injection into immune deficient mice has identified potent human repopulating cells from CD34+ and CD34− subfractions. We recently described a novel strategy to purify reconstituting HSC from human umbilical cord blood (UCB) by lineage depletion (Lin−) followed by selection of cells with high aldehyde dehydrogenase (ALDH) activity. Hematopoietic progenitor function and in vivo reconstituting ability were exclusively maintained within the ALDHhiLin− population, which demonstrated variable expression of CD34. Here, we compared the repopulating ability of purified CD34+ALDHhiLin− and CD34−ALDHhiLin− populations to traditionally isolated CD34+Lin− and CD34−Lin− cells. Sorting of Lin− cells from human UCB isolated CD34−ALDHhi and CD34+ALDHhi cells (>96% purity) at an overall frequency of 4.4±1.3% or 29.1±3.5%, respectively. In contrast to CD34−Lin− cells, ALDHhiCD34−Lin− cells demonstrated robust clonogenic progenitor function in vitro (1 CFU in 9 cells, n=3), and total colony production was further increased in ALDHhiCD34+Lin− cells (1 CFU in 4.5 cells, n=4) (p<0.05). Human hematopoietic repopulation was consistently observed in the bone marrow (17.2±4.2%), spleen (0.8±0.2%), and peripheral blood (0.7±0.3%) of NOD/SCID β2M null mice 6–8 weeks after IV transplant with 103–104 purified ALDHhiCD34+Lin− cells (n=14). Similarly, intra-femoral injection (IF) of ALDHhiCD34+Lin− cells resulted in robust human repopulation (n=5). IV injection of equivalent doses of either ALDHhiCD34+Lin− or CD34+Lin− cells showed similar levels and frequencies of human hematopoietic engraftment. Repopulating ALDHhiCD34+Lin− cells also differentiated into cells expressing markers for mature myeloid (CD33, CD14), B-lymphoid (CD19, CD20) cells and primitive repopulating cells (CD34+CD38−) at similar frequencies as CD34+Lin− cells (n=5). IV injection of 2x104–1x105 ALDHhiCD34−Lin− cells engrafted at 0.2–0.3% in the BM of 3 of 4 NOD/SCID β2M null mice, whereas IV injection of up to 4x105 CD34−Lin− cells produced no detectable human engraftment (n=6). IF-injected ALDHhiCD34−Lin− cells engrafted the injected bone in 2 of 3 NOD/SCID mice at low levels and did not efficiently migrate to the non-injected femur or tibiae. In summary, the human UCB ALDHhiLin− population includes both CD34+ and CD34− cells capable of bone marrow homing and hematopoietic reconstitution. Therefore, isolation of CD34− cells based on high ALDH activity may reveal a novel population of hematopoietic stem and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document