Accumulation of HIF-1α under the influence of nitric oxide

Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 1009-1015 ◽  
Author(s):  
Katrin Britta Sandau ◽  
Joachim Fandrey ◽  
Bernhard Brüne

Abstract The key player for adaptation to reduced oxygen availability is the transcription factor hypoxia-inducible factor 1 (HIF-1), composed of the redox-sensitive HIF-1α and the constitutively expressed HIF-1β subunits. Under normoxic conditions, HIF-1α is rapidly degraded, whereas hypoxia, CoCl2, or desferroxamine promote protein stabilization, thus evoking its transcriptional activity. Because HIF-1 is regulated by reactive oxygen species, investigation of the impact of reactive nitrogen species was intended. By using different nitric oxide (NO) donors, dose- and time-dependent HIF-1α accumulation in close correlation with the release of NO from chemically distinct NO donors was established. Intriguingly, small NO concentrations induced a faster but transient HIF-1α accumulation than higher doses of the same NO donor. In contrast, NO attenuated up-regulation of HIF-1α evoked by CoCl2 in a concentration- and time-dependent manner, whereas the desferroxamine-elicited HIF-1α signal remained unaltered. To demonstrate an autocrine or paracrine signaling function of NO, we overexpressed the inducible NO synthase and used a coculture system of activated macrophages and tubular cells. Expression of the NO synthase induced HIF-1α accumulation, which underscored the role of NO as an intracellular activator for HIF-1. In addition, macrophage-derived NO triggered HIF-1α up-regulation in LLC-PK1 target cells, which points to intercellular signaling properties of NO in achieving HIF-1 accumulation. Our results show that NO does not only modulate the HIF-1 response under hypoxic conditions, but it also functions as a HIF-1 inducer. We conclude that accumulation of HIF-1 occurs during hypoxia but also under inflammatory conditions that are characterized by sustained NO formation.

2007 ◽  
Vol 293 (4) ◽  
pp. H2403-H2408 ◽  
Author(s):  
Guo-Xing Zhang ◽  
Yukiko Nagai ◽  
Toshitaka Nakagawa ◽  
Hiroshi Miyanaka ◽  
Yoshihide Fujisawa ◽  
...  

Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study using catheterized, conscious rats, we found that acute intravenous administration of NG-nitro-l-arginine methyl ester (l-NAME; 5 mg/kg) enhanced phosphorylation of aortic MAP kinases extracellular signal regulated kinase (ERK) 1/2 and p38, which were suppressed only partially by a superoxide dismutase mimetic (Tempol), whereas ANG II-induced MAP kinase phosphorylation was markedly suppressed by Tempol. FK409, a NO donor, had little effect on vascular MAP kinase phosphorylation. On the other hand, acute exposure to a vasoconstrictor dose of ANG II (200 ng·kg−1·min−1 iv) failed to enhance phosphorylation of aortic MAP kinases in the chronically l-NAME-treated rats, whereas the vasoconstrictor effect of ANG II was not affected by l-NAME treatment. Furthermore, three different inhibitors of NO synthase suppressed, in a dose-dependent manner, ANG II-induced MAP kinase phosphorylation in rat vascular smooth muscle cells, which was closely linked to superoxide generation in cells. These results indicate the involvement of endogenous NO synthase in ANG II-induced signaling pathways, leading to activation of MAP kinase, and that NO may have dual effects on the vascular MAP kinase activation associated with redox sensitivity.


Reproduction ◽  
2003 ◽  
pp. 389-395 ◽  
Author(s):  
JJ Jaroszewski ◽  
M Bogacki ◽  
DJ Skarzynski

The aim of this study was to investigate the influence of nitric oxide (NO) donors (S-nitroso-L-acetyl penicillamine, spermine-NO complex and sodium nitroprusside) and NO synthase inhibitors (N(omega)-nitro-L-arginine methyl ester, N(omega)-nitro-l-arginine, and (+/-)-2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine) on progesterone production by dispersed bovine luteal cells cultured for 24 h. All NO donors inhibited progesterone production and increased nitrite or nitrate concentration in the medium in a dose-dependent manner. Secretion of progesterone was reduced to 75% (P < 0.01), 56% (P < 0.001) and 37% (P < 0.001) by S-nitroso-L-acetyl penicillamine; to 65% (P < 0.001), 45% (P < 0.001) and 33% (P < 0.001) by spermine-NO complex and to 77% (P < 0.05), 74% (P < 0.01) and 54% (P < 0.001) by sodium nitroprusside treatments at concentrations of 10(-5), 10(-4) and 10(-3) mol l(-1), respectively, compared with the concentration of this hormone measured in cells cultured in medium alone. NO synthase inhibitors decreased significantly (P < 0.05) nitrite or nitrate concentration and increased progesterone secretion with different potency at different doses. Significant increases in progesterone production were observed after N(omega)-nitro-L-arginine methyl ester treatment at a concentration of 10(-5) mol l(-1) and 10(-4) mol l(-1), and after N(omega)-nitro-l-arginine administration at a concentration of 10(-6) mol l(-1) (P < 0.01) and 10(-5) mol l(-1) (P < 0.05), compared with the concentration of this hormone measured in control cells. The results indicate that both NO donors and NO synthase inhibitors regulate steroidogenesis in cultured bovine luteal cells from days 10 to 14 of the oestrous cycle; however, the degree of progesterone inhibition by NO donors and stimulation by NO synthase inhibitors was dependent on the drug used.


Gut ◽  
1998 ◽  
Vol 43 (3) ◽  
pp. 401-407 ◽  
Author(s):  
J Werner ◽  
C Fernández-del Castillo ◽  
J A Rivera ◽  
N Kollias ◽  
K B Lewandrowski ◽  
...  

Background—Ectopic protease activation, microcirculatory changes, and leucocyte activation are the main events in the pathogenesis of acute pancreatitis. Nitric oxide (NO) is known to be a key mediator in the normal and inflamed pancreas.Aims—To investigate the targets on which NO exerts its effect in caerulein induced pancreatitis.Methods—Acute pancreatitis was induced in rats which additionally received either the NO synthase substrate, l-arginine; the NO donor, sodium nitroprusside; or the NO synthase inhibitor, N-nitro-l-arginine methyl ester (l-NAME). At six hours, pancreatic injury (oedema, leucocyte content, ectopic trypsinogen activation) was analysed and pancreatic oxygenation and perfusion were determined. A direct influence of NO on amylase secretion and trypsinogen activation was evaluated separately in vitro.Results—Both NO donors reduced the grade of inflammation. l-NAME increased the severity of inflammation, while decreasing pancreatic tissue oxygenation. Although neither amylase secretion nor intracellular trypsinogen activation in caerulein stimulated pancreatic acini was influenced by either NO donors or inhibitors, both NO donors decreased intrapancreatic trypsinogen activation peptide (TAP) and pancreatic oedema in vivo, andl-NAME increased TAP.Conclusions—NO protects against injury caused by pancreatitis in the intact animal but has no discernible effect on isolated acini. It is likely that in pancreatitis NO acts indirectly via microcirculatory changes, including inhibition of leucocyte activation and preservation of capillary perfusion.


1998 ◽  
Vol 66 (5) ◽  
pp. 2115-2121 ◽  
Author(s):  
Mbithe Mutunga ◽  
Patricia M. Preston ◽  
Keith J. Sumption

ABSTRACT Nitric oxide (NO) is a labile inorganic free radical produced by NO synthase from the substrate l-arginine in various cells and tissues including endothelial cells. A substantial elevation of nitrite levels indicative of NO production occurred in cultures ofCowdria ruminantium-infected bovine pulmonary endothelial cells (BPEC) incubated in medium alone. Exposure of the infected cultures to recombinant bovine gamma interferon (BorIFN-γ) resulted in more rapid production of NO, reduced viability of C. ruminantium, and induction of endothelial cell death. Significant inhibition of NO production was noted after addition of the NO synthase inhibitor N-monomethyl-l-arginine (l-NMMA), indicating that the increase in production occurred via the inducible NO synthase pathway. Reduction in the infectivity of C. ruminantium elementary bodies (EBs) occurred in a dose-dependent manner after incubation with the NO donor moleculeS-nitroso-N-acetyl-dl-penicillamine (SNAP) prior to infection of endothelial cells. The level of infection in cultures maintained in SNAP was reduced in a dose-dependent manner with significant negative correlation between the final level of infection on day 7 and the level of SNAP (r = −0.96). It was established that pretreatment and cultivation of C. ruminantium EBs with the NO donor molecule SNAP reduced infectivity to cultures and viability of EBs with the implication that release of NO in vivo following infection of endothelial cells may have an effect upon the multiplication of the agent in the host animal and may be involved in the pathogenesis of heartwater through the effect of this molecule upon circulation.


2018 ◽  
Author(s):  
Le Gui ◽  
Jinhui Zhu ◽  
Xiangru Lu ◽  
Stephen M. Sims ◽  
Wei-Yang Lu ◽  
...  

AbstractStore-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule-1 (STIM1) and Orai1 represents a major route of Ca2+ entry in mammalian cells and is initiated by STIM1 oligomerization in the endoplasmic or sarcoplasmic reticulum (ER/SR). However, the effects of nitric oxide (NO) on STIM1 function are unknown. Neuronal NO synthase (nNOS) is located in the SR of cardiomyocytes. Here, we show that STIM1 is susceptible to S-nitrosylation. nNOS deficiency or inhibition enhanced Ca2+ release-activated Ca2+ channel current (ICRAC) and SOCE in cardiomyocytes. Consistently, NO donor S-nitrosoglutathione (GSNO) inhibited STIM1 puncta formation and ICRAC in HEK293 cells, but this effect was absent in cells expressing the Cys49Ser/Cys56Ser STIM1 double mutant. Furthermore, NO donors caused Cys49 and Cys56-specific structural changes associated with reduced protein backbone mobility, increased thermal stability and suppressed Ca2+-depletion-dependent oligomerization of the luminal Ca2+-sensing region of STIM1. Collectively, our data show that S-nitrosylation of STIM1 suppresses oligomerization via enhanced luminal domain stability and rigidity, and inhibits SOCE in cardiomyocytes.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zjwan Housein ◽  
Tayeb Sabir Kareem ◽  
Abbas Salihi

AbstractThis study was carried out to assess the impact of nickel nanoparticles (NiNPs) as well as scorpion venom on colorectal cancer (CRC) cells in the presence and/or absence of 5-fluorouracil (5-FU), hydrogen sulfide (H2S), and nitric oxide (NO) donors and to determine alterations in endothelial NO synthase (eNOS) and cystathionine γ-lyase (CSE) enzyme-producing genes in CRC patients. The IC50 of both H2S and NO donors, along with NiNPs, were determined. The CRC cells were treated for 24hrs, and the cytotoxic activities were assessed using the MTT test. Moreover, the apoptosis was determined after 24hrs and 48hrs using TUNEL assay. Furthermore, the mutations in the eNOS gene (intron 4, -786T>C and 894 G>T) and CSE gene (1364GT) were determined using direct sequencing. The IC50 values for sodium disulfide (Na2S) and sodium nitroprusside (SNP) at 24hrs treatment were found to be 5 mM and 10−6 M, respectively, while the IC50 value for 5-FU was reached after 5-days of treatment in CRC cell line. Both black and yellow scorpion venoms showed no inhibition of cell proliferation after 24hrs treatment. Furthermore, Na2S showed a significant decrease in cell proliferation and an increase in apoptosis. Moreover, a co-treatment of SNP and 5-FU resulted in inhibition of the cytotoxic effect of 5-FU, while a combination treatment of NiNPs with Na2S, SNP, and 5-FU caused highly significant cytotoxicity. Direct sequencing reveals new mutations, mainly intronic variation in eNOS gene that has not previously been described in the database. These findings indicate that H2S promotes the anticancer efficiency of 5-FU in the presence of NiNPs while NO has antiapoptotic activity in CRC cell lines.


1999 ◽  
Vol 344 (3) ◽  
pp. 837-844 ◽  
Author(s):  
Atsushi MITSUMOTO ◽  
Kwi-Ryeon KIM ◽  
Genichiro OSHIMA ◽  
Manabu KUNIMOTO ◽  
Katsuya OKAWA ◽  
...  

To clarify the molecular mechanisms of nitric oxide (NO) signalling, we examined the NO-responsive proteins in cultured human endothelial cells by two-dimensional (2D) PAGE. Levels of two proteins [NO-responsive proteins (NORPs)] with different pI values responded to NO donors. One NORP (pI 5.2) appeared in response to NO, whereas another (pI 5.0) disappeared. These proteins were identified as a native form and a modified form of human glyoxalase I (Glox I; EC 4.4.1.5) by peptide mapping, microsequencing and correlation between the activity and the isoelectric shift. Glox I lost activity in response to NO, and all NO donors tested inhibited its activity in a dose-dependent manner. Activity and normal electrophoretic mobility were restored by dithiothreitol and by the removal of sources of NO from the culture medium. Glox I was selectively inactivated by NO; compounds that induce oxidative stress (H2O2, paraquat and arsenite) failed to inhibit this enzyme. Our results suggest that NO oxidatively modifies Glox I and reversibly inhibits the enzyme's activity. The inactivation of Glox I by NO was more effective than that of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), another NO-sensitive enzyme. Thus Glox I seems to be a novel NO-responsive protein that is more sensitive to NO than G3PDH.


1999 ◽  
Vol 202 (6) ◽  
pp. 655-660
Author(s):  
A. Huwiler ◽  
J. Pfeilschifter

Nitric oxide (NO) has gained increased attention as a diffusible universal messenger that plays a crucial role in the pathogenesis of inflammatory and autoimmune diseases. Recently, we reported that exogenous NO is able to activate the stress-activated protein kinase (SAPK) cascade in mesangial cells. Here, we demonstrate that exposure of glomerular mesangial cells to compounds releasing NO, including spermine-NO and (Z)-1-?N-methyl-N-[6-(N-methylammoniohexyl)amino]diazen?-1-ium+ ++-1,2-diolate (MAHMA-NO), results in an activation of the stress-activated p38-mitogen-activated protein kinase (p38-MAPK) cascade as measured by the phosphorylation of the activator of transcription factor-2 (ATF2) in an immunocomplex kinase assay. Activation of the p38-MAPK cascade by a short stimulation (10 min) with the NO donor MAHMA-NO causes a large increase in ATF2 phosphorylation that is several times greater than that observed after stimulation with interleukin-1beta, a well-known activator of the p38-MAPK pathway. Time course studies reveal that MAHMA-NO causes rapid and maximal activation of p38-MAPK after 10 min of stimulation and that activation declines to basal levels within 60 min. The longer-lived NO donor spermine-NO causes a comparable rapid activation of the p38-MAPK pathway; however, the increased activation state of p38-MAPK was maintained for several hours before control values were reattained after 24 h of stimulation. Furthermore, the NO donors also activated the classical extracellular signal-regulated kinase (ERK) p44-MAPK cascade as shown by phosphorylation of the specific substrate cytosolic phospholipase A2 in an immunocomplex kinase reaction. Both MAHMA-NO and spermine-NO cause a rapid activation of p44-MAPK after 10 min of stimulation. Interestingly, there is a second delayed peak of p44-MAPK activation after 4–24 h of stimulation with NO donors. These results suggest that there is a differential activation pattern for stress-activated and mitogen-activated protein kinases by NO and that the integration of these signals may lead to specific cell responses.


Sign in / Sign up

Export Citation Format

Share Document