Purification and characterization of the yeast-expressed erythropoietin mutant Epo (R103A), a specific inhibitor of human primary hematopoietic cell erythropoiesis

Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4400-4405 ◽  
Author(s):  
Suzanne Burns ◽  
Murat O. Arcasoy ◽  
Li Li ◽  
Elizabeth Kurian ◽  
Katri Selander ◽  
...  

A drug that specifically inhibits erythropoiesis would be clinically useful. The erythropoietin (Epo) mutant Epo (R103A) could potentially be used for this purpose. Epo (R103A) has a single amino acid substitution of alanine for arginine at position 103. Because of this mutation, Epo (R103A) is only able to bind to one of the 2 subunits of the erythropoietin receptor (EpoR) homodimer and is thus a competitive inhibitor of Epo activity. To produce large quantities of Epo (R103A) to test in animal models of thalassemia and sickle cell disease, we expressed and purified recombinant Epo (R103A) from the yeast Pichia pastoris. Using this method milligram quantities of highly purified Epo (R103A) are obtained. The yeast-expressed Epo (R103A) is properly processed and glycosylated and specifically inhibits Epo-dependent cell growth and125I-Epo binding. Epo (R103A) does not, however, directly induce apoptosis in 32D cells expressing EpoR. Epo (R103A) inhibits erythropoiesis of human CD34+ hematopoietic cells and completely blocks erythroid burst-forming unit formation in normal human bone marrow colony assays. Yeast-expressed Epo (R103A) is a specific inhibitor of primary erythropoiesis suitable for testing in animal models.

2020 ◽  
Vol 20 (7) ◽  
pp. 490-500 ◽  
Author(s):  
Justin S. Becker ◽  
Amir T. Fathi

The genomic characterization of acute myeloid leukemia (AML) by DNA sequencing has illuminated subclasses of the disease, with distinct driver mutations, that might be responsive to targeted therapies. Approximately 15-23% of AML genomes harbor mutations in one of two isoforms of isocitrate dehydrogenase (IDH1 or IDH2). These enzymes are constitutive mediators of basic cellular metabolism, but their mutated forms in cancer synthesize an abnormal metabolite, 2- hydroxyglutarate, that in turn acts as a competitive inhibitor of multiple gene regulatory enzymes. As a result, leukemic IDH mutations cause changes in genome structure and gene activity, culminating in an arrest of normal myeloid differentiation. These discoveries have motivated the development of a new class of selective small molecules with the ability to inhibit the mutant IDH enzymes while sparing normal cellular metabolism. These agents have shown promising anti-leukemic activity in animal models and early clinical trials, and are now entering Phase 3 study. This review will focus on the growing preclinical and clinical data evaluating IDH inhibitors for the treatment of IDH-mutated AML. These data suggest that inducing cellular differentiation is central to the mechanism of clinical efficacy for IDH inhibitors, while also mediating toxicity for patients who experience IDH Differentiation Syndrome. Ongoing trials are studying the efficacy of IDH inhibitors in combination with other AML therapies, both to evaluate potential synergistic combinations as well as to identify the appropriate place for IDH inhibitors within existing standard-of-care regimens.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1954136
Author(s):  
Sujatha Kumar ◽  
Srimoyee Ghosh ◽  
Geeta Sharma ◽  
Zebin Wang ◽  
Marilyn R. Kehry ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1983-1991 ◽  
Author(s):  
EM Bevers ◽  
T Wiedmer ◽  
P Comfurius ◽  
J Zhao ◽  
EF Smeets ◽  
...  

Elevation of cytoplasmic Ca2+ levels in human erythrocytes induces a progressive loss of membrane phospholipid asymmetry, a process that is impaired in erythrocytes from a patient with Scott syndrome. We show here that porcine erythrocytes are similarly incapable of Ca(2+)- induced redistribution of membrane phospholipids. Because a complex of phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ has been proposed as the mediator of enhanced transbilayer movement of lipids (J Biol Chem 269:6347,1994), these cell systems offer a unique opportunity for testing this mechanism. Analysis of both total PIP2 content and the metabolic-resistant pool of PIP2 that remains after incubation with Ca2+ ionophore showed no appreciable differences between normal and Scott erythrocytes. Moreover, porcine erythrocytes were found to have slightly higher levels of both total and metabolic-resistant PIP2 in comparison with normal human erythrocytes. Although loading of normal erythrocytes with exogenously added PIP2 gave rise to a Ca(2+)-induced increase in prothrombinase activity and apparent transbilayer movement of nitrobenzoxadiazolyl (NBD)-phospholipids, these PIP2-loaded cells were also found to undergo progressive Ca(2+)-dependent cell lysis, which seriously hampers interpretation of these data. Moreover, loading Scott cells with PIP2 did not abolish their impaired lipid scrambling, even in the presence of a Ca(2+)-ionophore. Finally, artificial lipid vesicles containing no PIP2 or 1 mole percent of PIP2 were indistinguishable with respect to transbilayer movement of NBD- phosphatidylcholine in the presence of Ca2+. Our findings suggest that Ca(2+)-induced redistribution of membrane phospholipids cannot simply be attributed to the steady-state concentration of PIP2, and imply that such lipid movement is regulated by other cellular processes.


2009 ◽  
Vol 18 (10) ◽  
pp. 1417-1422 ◽  
Author(s):  
Katalin Dezső ◽  
Sándor Paku ◽  
Veronika Papp ◽  
Eszter Turányi ◽  
Peter Nagy

1986 ◽  
Vol 6 (9) ◽  
pp. 3109-3116 ◽  
Author(s):  
C Birchmeier ◽  
D Birnbaum ◽  
G Waitches ◽  
O Fasano ◽  
M Wigler

A human oncogene, mcf3, previously detected by a combination of DNA-mediated gene transfer and a tumorigenicity assay, derives from a human homology of the avian v-ros oncogene. Both v-ros and mcf3 can encode a protein with homology to tyrosine-specific protein kinases, and both mcf3 and v-ros encode a potential transmembrane domain N terminal to the kinase domain. mcf3 probably arose during gene transfer from a normal human ros gene by the loss of a putative extracellular domain. There do not appear to be any other gross rearrangements in the structure of mcf3.


Sign in / Sign up

Export Citation Format

Share Document