scholarly journals The lymphoproliferative defect in CTLA-4–deficient mice is ameliorated by an inhibitory NK cell receptor

Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4509-4516 ◽  
Author(s):  
Cynthia A. Chambers ◽  
Joonsoo Kang ◽  
Yongjian Wu ◽  
Werner Held ◽  
David H. Raulet ◽  
...  

T-cell responses are regulated by activating and inhibiting signals. CD28 and its homologue, cytotoxic T-lymphocyte antigen 4 (CTLA-4), are the primary regulatory molecules that enhance or inhibit T-cell activation, respectively. Recently it has been shown that inhibitory natural killer (NK) cell receptors (NKRs) are expressed on subsets of T cells. It has been proposed that these receptors may also play an important role in regulating T-cell responses. However, the extent to which the NKRs modulate peripheral T-cell homeostasis and activation in vivo remains unclear. In this report we show that NK cell inhibitory receptor Ly49A engagement on T cells dramatically limits T-cell activation and the resultant lymphoproliferative disorder that occurs in CTLA-4–deficient mice. Prevention of activation and expansion of the potentially autoreactive CTLA-4−/− T cells by the Ly49A-mediated inhibitory signal demonstrates that NKR expression can play an important regulatory role in T-cell homeostasis in vivo. These results demonstrate the importance of inhibitory signals in T-cell homeostasis and suggest the common biochemical basis of inhibitory signaling pathways in T lymphocytes.

2021 ◽  
Author(s):  
Giuliana P. Mognol ◽  
Barbara Oliveira-Vieira ◽  
Natalia Pinheiro-Rosa ◽  
Barbara C. Peixoto ◽  
Marianna Boroni ◽  
...  

The levels of the co-transcriptional regulator IRF2BP2 (Interferon Regulatory Factor-2 Binding Protein-2) decrease with T cell activation and, when ectopically expressed, it reduces T cell proliferation. To further characterize the function of IRF2BP2 in T cell responses in vivo, we generated a conditional transgenic knock-in mouse that overexpresses IRF2BP2 in T lymphocytes. Overexpression of IRF2BP2 leads to a reduction in the T cell compartment of naive animals, upregulation of Foxp3 and Ifng; an increase in the frequency of regulatory T cells (Tregs), a preferential Th1 differentiation with increase of IFN-γ production and a reduction of T cell proliferation, suggesting a disruption in T cell homeostasis. Interestingly, knock-in mice displayed reduced clinical and inflammatory signs of Experimental Autoimmune Encephalomyelitis (EAE) when compared to the control mice, with an augmented frequency of Treg cells. Altogether, our findings indicate that IRF2BP2 might help to control exacerbated T cell responses and point to a role for IRF2BP2 in preventing T cell autoimmunity.


2018 ◽  
Vol 77 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Catriona T Prendergast ◽  
Agapitos Patakas ◽  
Shaima Al-Khabouri ◽  
Claire L McIntyre ◽  
Iain B McInnes ◽  
...  

ObjectivesSuccessful early intervention in rheumatoid arthritis (RA) with the aim of resetting immunological tolerance requires a clearer understanding of how specificity, cellular kinetics and spatial behaviour shape the evolution of articular T cell responses. We aimed to define initial seeding of articular CD4+ T cell responses in early experimental arthritis, evaluating their dynamic behaviour and interactions with dendritic cells (DCs) in the inflamed articular environment.MethodsAntigen-induced arthritis was used to model articular inflammation. Flow cytometry and PCR of T cell receptor (TCR) diversity genes allowed phenotypic analysis of infiltrating T cells. The dynamic interactions of T cells with joint residing DCs were visualised using intravital multiphoton microscopy.ResultsInitial recruitment of antigen-specific T cells into the joint was paralleled by accumulation of CD4+ T cells with diverse antigen-receptor expression and ability to produce tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) on mitogenic restimulation. A proportion of this infiltrate demonstrated slower motility speeds and engaged for longer periods with articular DCs in vivo. Abatacept treatment did not disrupt these interactions but did reduce T cell expression of inducible costimulatory (ICOS) molecule. We also demonstrated that non-specific CD4+ T cells could be recruited during these early articular events.ConclusionsWe demonstrate that CD4+ T cells engage with articular DCs supporting antigen specific T cell reactivation. This cellular dialogue can be targeted therapeutically to reduce local T cell activation.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 606-615 ◽  
Author(s):  
Cristina Cerboni ◽  
Alessandra Zingoni ◽  
Marco Cippitelli ◽  
Mario Piccoli ◽  
Luigi Frati ◽  
...  

AbstractRecent evidence indicates that natural killer (NK) cells can negatively regulate T-cell responses, but the mechanisms behind this phenomenon as a consequence of NK–T-cell interactions are poorly understood. We studied the interaction between the NKG2D receptor and its ligands (NKG2DLs), and asked whether T cells expressed NKG2DLs in response to superantigen, alloantigen, or a specific antigenic peptide, and if this rendered them susceptible to NK lysis. As evaluated by FACS, the major histocompatibility complex (MHC) class I chain-related protein A (MICA) was the ligand expressed earlier on both CD4+ and CD8+ T cells in 90% of the donors tested, while UL16-binding protein-1 (ULBP)1, ULBP2, and ULBP3 were induced at later times in 55%–75% of the donors. By carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, we observed that NKG2DLs were expressed mainly on T cells that had gone through at least one division. Real-time reverse-transcription polymerase chain reaction confirmed the expression of all NKG2DLs, except ULBP4. In addition, T-cell activation stimulated phosphorylation of ataxia-telangiectasia mutated (ATM), a kinase required for NKG2DLs expression after DNA damage, and ATM/Rad3-related kinase (ATR) inhibitors blocked MICA induction on T cells with a mechanism involving NF-κB. Finally, we demonstrated that activated T cells became susceptible to autologous NK lysis via NKG2D/NKG2DLs interaction and granule exocytosis, suggesting that NK lysis of T lymphocytes via NKG2D may be an additional mechanism to limit T-cell responses.


2015 ◽  
Author(s):  
Jacob Hanna ◽  
Ofer Mandelboim

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell-mediated cytotoxicity and specific ligand recognition by cell surface-activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell-activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell-activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5793-5800 ◽  
Author(s):  
Manoj Saini ◽  
Claire Pearson ◽  
Benedict Seddon

Abstract Interleukin-7 (IL-7) plays a central role in the homeostasis of the T-cell compartment by regulating T-cell survival and proliferation. Whether IL-7 can influence T-cell receptor (TCR) signaling in T cells remains controversial. Here, using IL-7–deficient hosts and TCR-transgenic T cells that conditionally express IL-7R, we examined antigen-specific T-cell responses in vitro and in vivo to viral infection and lymphopenia to determine whether IL-7 signaling influences TCR-triggered cell division events. In vitro, we could find no evidence that IL-7 signaling could costimulate T-cell activation over a broad range of conditions, suggesting that IL-7 does not directly tune TCR signaling. In vivo, however, we found an acute requirement for IL-7 signaling for efficiently triggering T-cell responses to influenza A virus challenge. Furthermore, we found that IL-7 was required for the enhanced homeostatic TCR signaling that drives lymphopenia-induced proliferation by a mechanism involving efficient contacts of T cells with dendritic cells. Consistent with this, saturating antigen-presenting capacity in vivo overcame the triggering defect in response to cognate peptide. Thus, we demonstrate a novel role for IL-7 in regulating T cell–dendritic cell interactions that is essential for both T-cell homeostasis and activation in vivo.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1690-1690
Author(s):  
Xiaomeng Hu ◽  
Mo Dao ◽  
Kathy White ◽  
Corie Gattis ◽  
Ryan Clarke ◽  
...  

Abstract Off-the-shelf CAR T cells may offer advantages over autologous strategies, including ease of manufacturing, improved quality control with avoidance of malignant contamination and T cell dysfunction as well as the ability to generate a final product from healthy T cells. While TCR editing can effectively prevent graft-versus-host reactions, the significant host-versus-graft immune response against histoincompatible T cells prevents the expansion and persistence of allogeneic CAR T cells and mitigates the efficacy of this approach. The goal is to achieve improved rates of durable complete remissions by improving allogeneic CD19CAR persistence since it has been shown that autologous CAR T cells have greater durability over years than allogeneic CAR T cells (N Engl J Med. 2021;384(7):673-674). We describe here the engineering of human immune evasive CAR T cells based on our previously described hypoimmune technology (Nat Biotechnol 2019;37(3):252-258 and Proc Natl Acad Sci U S A 2021;118(28):e2022091118). A major challenge is that, while HLA deletion can result in adaptive immune evasion, innate reactivity is enhanced by this strategy. Since CD47 overexpression can block both NK cell and macrophage killing (J Exp Med 2021;218(3):e20200839), we hypothesized that T cells would lose their immunogenicity when human leukocyte antigen (HLA) class I and II genes are inactivated and CD47 is over-expressed. Human T cells from healthy donors were obtained by leukapheresis. To generate hypoimmune CD19CAR T cells, gene editing was used to delete b2m, CIITA, and TCR expression and lentiviral transduction was used to overexpress CD47 and CD19CAR containing a 4-1BB costimulatory domain to generate hypoimmune CAR T cells. Control T cells were unmanipulated except for lentiviral transduction used to overexpress the same CD19CAR and the deletion of the TCR. When transplanted into allogeneic humanized mice, hypoimmune CD19CAR T cells evade immune recognition by T cells even in previously sensitized animals as evidenced by a lack of T cell activation measured using ELISPOT analysis. In contrast, transplantation of non-hypoimmune-edited CD19CAR T cells generated from the same human donor resulted in a significant T cell activation (see figure: mean 59 and 558 spot frequencies for hypoimmune CD19CAR T cells and non-edited CD19CAR T cells, respectively; p<0.0001 unpaired T-test). In addition to evading T cells, immune cell assays show that CD47 overexpression protects hypoimmune CD19CAR T cells from NK cell and macrophage killing in vitro and in vivo. Relative CD47 expression levels were analyzed to understand the relevance of CD47 for protection from macrophage and NK cell killing. A blocking antibody against CD47 made the hypoimmune CAR T cells susceptible to macrophage and NK cell killing in vitro and in vivo, confirming the importance of CD47 overexpression to evade innate immune clearance. The hypoimmune CD19 CAR T cells retained their antitumor activity in both the Daudi and Nalm-6 B cell leukemia models, in vitro and in vivo. This indicated that the hypoimmune technology-i.e. isolated CD47 overexpression, deletion of b2m, CIITA, and TCR- did not show any effect on the cytotoxic potential of CD19 CAR T cells (see figure). These studies demonstrate that in vivo clearance of leukemic cells in NSG mice occurs across a range of tumor cell toCD19 CAR T cell ratios in a manner comparable to control, unedited CD19 CAR T cells (see figure). This result was validated using T cells from 3 different donors These findings show that, in these models, hypoimmune CD19 CAR T cells are functionally immune evasive in allogeneic humanized mouse recipients and have cytotoxic anti-tumor capacity. They suggest that hypoimmune CAR T cells could provide universal CAR T cells that are able to persist without immunosuppression. Furthermore, these data suggest that hypoimmune CD19 CAR T cells can be used in sensitized patients and for re-dosing strategies. Figure 1 Figure 1. Disclosures Hu: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dao: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. White: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Gattis: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Clarke: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Landry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Basco: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Tham: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Tucker: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Luo: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Bandoro: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Chu: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Young: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Foster: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dowdle: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Rebar: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Schrepfer: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5102-5111 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Soto ◽  
Luiz Stark-Aroeira ◽  
Esther Castellano ◽  
Balbino Alarcón ◽  
...  

Abstract The small guanine nucleotide binding proteins of the Ras family, including in mammals the highly homologous H-ras, N-ras, and K-ras isoforms, are rapidly activated on ligation of the T-cell antigen receptor (TCR), but whether each isoform plays specific roles in T cells is largely unknown. Here, we show, with the use of mice specifically lacking H-ras or N-ras, that these isoforms are dispensable for thymocyte development and mature T-cell activation. By contrast, CD4+ T cells from Ras-deficient mice exhibited markedly decreased production of the Th1 signature cytokine IFN-γ early after TCR stimulation, concomitantly with impaired induction of the Th1-specific transcription factor T-bet. Accordingly, Ras-deficient mice failed to mount a protective Th1 response in vivo against the intracellular parasite Leishmania major, although they could be rendered resistant to infection if a Th1-biased milieu was provided during parasite challenge. Collectively, our data indicate that the TCR recruits distinct Ras isoforms for signal transduction in developing and mature T cells, thus providing a mechanism for differential signaling from the same surface receptor. Furthermore, we demonstrate for the first time that H-ras and N-ras act as critical controllers of Th1 responses, mostly by transmitting TCR signals for Th1 priming of CD4+ T cells.


2015 ◽  
Vol 113 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Omar I. Vivar ◽  
Giulia Masi ◽  
Jean-Marie Carpier ◽  
Joao G. Magalhaes ◽  
Donatella Galgano ◽  
...  

Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4+ T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4+ T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag−/− mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo.


2002 ◽  
Vol 76 (8) ◽  
pp. 3943-3951 ◽  
Author(s):  
M. Suresh ◽  
Gibson Lanier ◽  
Mary Katherine Large ◽  
Jason K. Whitmire ◽  
John D. Altman ◽  
...  

ABSTRACT The importance of lymphotoxin α (LTα) in lymphoid organogenesis is well established. Although LTα has been implicated in the pathogenesis of T-cell-mediated immunopathologies, the requirement for LTα in T-cell activation and effector function in vivo is not well understood. To determine the role of LTα in T-cell activation in vivo, we compared the generation of antigen-specific T-cell responses between wild type (+/+) and LTα-deficient (LTα−/−) mice during an acute infection with lymphocytic choriomeningitis virus (LCMV). Our studies showed that LCMV-infected LTα−/− mice had a profound impairment in the activation and expansion of virus-specific CD8 T cells in the spleen, as determined by cytotoxicity assays, intracellular staining for gamma interferon, and staining with major histocompatibility complex class I tetramers. Further, the nonlymphoid organs of LTα−/− mice also contained substantially lower number of LCMV-specific CD8 T cells than those of +/+ mice. Greatly reduced virus-specific CD8 T-cell responses in LTα−/− mice led to a defect in LCMV clearance from the tissues. In comparison to that in +/+ mice, the activation of LCMV-specific CD4 T cells was also significantly attenuated in LTα−/− mice. Adoptive transfer experiments were conducted to determine if abnormal lymphoid architecture in LTα−/− mice caused the impairment in the activation of LCMV-specific T-cell responses. Upon adoptive transfer into +/+ mice, the activation and expansion of LCMV-specific LTα−/− T cells were restored to levels comparable to those of +/+ T cells. In a reciprocal cell transfer experiment, activation of +/+ T cells was significantly reduced upon transfer into LTα−/− mice. These results showed that impairment in the activation of LCMV-specific T cells in LTα−/− mice may be due to abnormal lymphoid architecture and not to an intrinsic defect in LTα−/− T cells.


2021 ◽  
Vol 9 (5) ◽  
pp. e001925
Author(s):  
Shujuan Zhou ◽  
Fanyan Meng ◽  
Shiyao Du ◽  
Hanqing Qian ◽  
Naiqing Ding ◽  
...  

BackgroundPoor infiltration and limited activation of transferred T cells are fundamental factors impeding the development of adoptive cell immunotherapy in solid tumors. A tumor-penetrating peptide iRGD has been widely used to deliver drugs deep into tumor tissues. CD3-targeting bispecific antibodies represent a promising immunotherapy which recruits and activates T cells.MethodsT-cell penetration was demonstrated in tumor spheroids using confocal microscope, and in xenografted tumors by histology and in vivo real-time fluorescence imaging. Activation and cytotoxicity of T cells were assessed by flow cytometry and confocal microscope. Bioluminescence imaging was used to evaluate in vivo antitumor effects, and transmission electron microscopy was used for mechanistic studies.ResultsWe generated a novel bifunctional agent iRGD-anti-CD3 which could immobilize iRGD on the surface of T cells through CD3 engaging. We found that iRGD-anti-CD3 modification not only facilitated T-cell infiltration in 3D tumor spheroids and xenografted tumor nodules but also induced T-cell activation and cytotoxicity against target cancer cells. T cells modified with iRGD-anti-CD3 significantly inhibited tumor growth and prolonged survival in several xenograft mouse models, which was further enhanced by the combination of programmed cell death protein 1 (PD-1) blockade. Mechanistic studies revealed that iRGD-anti-CD3 initiated a transport pathway called vesiculovacuolar organelles in the endothelial cytoplasm to promote T-cell extravasation.ConclusionAltogether, we show that iRGD-anti-CD3 modification is an innovative and bifunctional strategy to overcome major bottlenecks in adoptive cell therapy. Moreover, we demonstrate that combination with PD-1 blockade can further improve antitumor efficacy of iRGD-anti-CD3-modified T cells.


Sign in / Sign up

Export Citation Format

Share Document