Retinoic acid–induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional up-regulation of p27Kip1

Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2199-2206 ◽  
Author(s):  
Anna Dimberg ◽  
Fuad Bahram ◽  
Inger Karlberg ◽  
Lars-Gunnar Larsson ◽  
Kenneth Nilsson ◽  
...  

Abstract All-trans retinoic acid (ATRA) is a potential therapeutic agent for the treatment of hematopoietic malignancies, because of its function as an inducer of terminal differentiation of leukemic blasts. Although the efficacy of ATRA as an anticancer drug has been demonstrated by the successful treatment of acute promyelocytic leukemia (APL), the molecular mechanisms of ATRA-induced cell cycle arrest of myeloid cells have not been fully investigated. In this study, we show that the onset of ATRA-induced G0/G1 arrest of human monoblastic U-937 cells is linked to a sharp down-regulation of c-Myc and cyclin E levels and an increase in p21WAF1/CIP1 expression. This is followed by an increase in p27Kip1 protein expression due to enhanced protein stability. The importance of an early decrease in Myc expression for these events was demonstrated by the failure of a U-937 subline with constitutive exogenous expression of v-Myc to cell cycle arrest and regulate cyclin E and p27Kip1 in response to ATRA. Preceding the initiation of G1 arrest, a transient rise in retinoblastoma protein (pRb), p107, and cyclin A levels was detected. Later, a rapid fall in the levels of cyclins A and B and a coordinate dephosphorylation of pRb at Ser780, Ser795, and Ser807/811 coincided with the accumulation of cells in G1. These results thus identify a decrease in c-Myc and cyclin E levels and a posttranscriptional up-regulation of p27Kip1 as important early changes, and position them in the complex chain of events regulating ATRA-induced cell cycle arrest of myeloid cells.

MedChemComm ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Jing-Mei Yang ◽  
Yan-Hong Zhu ◽  
Sheng Chen ◽  
Xing Lu ◽  
Yi-Ming Wu ◽  
...  

A novel nickel(ii) complex was synthesized and characterized. It significantly induced cell cycle arrest at S phase, and caused the down-regulation of p-AKT, cyclin E, cyclin A and CDK2 and the up-regulation of p27.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 254-261 ◽  
Author(s):  
Anna Dimberg ◽  
Inger Karlberg ◽  
Kenneth Nilsson ◽  
Fredrik Öberg

Abstract All-trans retinoic acid (ATRA)—induced growth arrest of myeloid cells is associated with a sequential regulation of cyclins and cyclin-dependent kinase inhibitors (CKIs), which modulates the cell cycle machinery and inhibits the G1-S phase progression. ATRA treatment of myeloid cells induces up-regulation and tyrosine phosphorylation of Stat1, a member of the STAT (signal transducer and activator of transcription) transcription factor family that has been implicated in growth arrest in response to interferons. We have previously shown that ATRA-induced cell cycle arrest is dependent on tyrosinephosphorylated Stat1. In this study, we show that there is a basal level of Stat1 Ser727 phosphorylation in U-937 cells, which is transiently increased in response to ATRA treatment. Using Stat1Ser727Ala-expressing sublines, we provide evidence that Ser727 phosphorylation of Stat1 is required for ATRA-induced growth arrest. To shed further light on the role of Stat1 in ATRA-induced cell cycle arrest, cyclin and CKI expression was analyzed during ATRA treatment in U-937 sublines expressing Stat1Ser727Ala and Stat1Tyr701Phe. Our results show that Ser727/Tyr701-phosphorylated Stat1 plays a key role as a prerequisite for the ATRA-induced down-regulation of c-Myc; cyclins A, B, D2, D3, and E; and the simultaneous up-regulation of p27Kip1, associated with arrest in the G0/G1 phase of the cell cycle. (Blood. 2003;102:254-261)


2003 ◽  
Vol 44 (10) ◽  
pp. 1641-1650 ◽  
Author(s):  
Anna Dimberg ◽  
Fredrik Öberg

1997 ◽  
Vol 17 (9) ◽  
pp. 5598-5611 ◽  
Author(s):  
D Woods ◽  
D Parry ◽  
H Cherwinski ◽  
E Bosch ◽  
E Lees ◽  
...  

The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.


2019 ◽  
Vol 59 ◽  
pp. 150-160 ◽  
Author(s):  
Helloana Azevedo-Barbosa ◽  
Guilherme Álvaro Ferreira-Silva ◽  
Carolina Faria Silva ◽  
Thiago Belarmino de Souza ◽  
Danielle Ferreira Dias ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Krishnambal Govender ◽  
Indres Moodley ◽  
Raveen Parboosing

Background: The aim of the study was to determine the mechanism of Moringa oleifera-induced apoptosis in HeLa cells. HeLa cells over-express cyclin E and cyclin B1, abrogate G0-G1 and G2-M cell cycle arrest, promoting tumorigenesis. Cyclin E, cyclin B1, E2F1 and telomerase expression, and caspase-3 and -7 activation were assessed after 24-treatment with M. oleifera leaf fractions. Material and methods: Apoptosis through caspase-3 and caspase-7 activation was determined quantitatively by the FAM FLICA™ Caspase-3/7 assay. Cyclin E, cyclin B1 and E2F1 were quantified by flow cytometry. Telomerase was evaluated by Telomeric repeat amplification protocol (TRAP reaction). The effects on colony formation were assessed by seeding treated cells in six-well plates for 7 days under culture conditions. The MTT assay was used to determine cell survival. Results: HeLa cells treated for 24 hours with M. oleifera leaf fractions showed dose-dependent cytotoxicity, activation of caspases-3 and -7; down-regulation of cyclin E, cyclin B1, E2F1, and inhibition of telomerase expression. Cell cycle analysis of the dead cell population showed G2-M cell-cycle arrest. Conclusion: M. oleifera leaf fractions triggered apoptosis through the mitochondrial pathway and cell cycle arrest at G2-M phase in HeLa cells after 24-hour treatment, through down-regulation of cyclin E and cyclin B1 expression; and caspase-3 and -7 activation. In addition, M. oleifera leaf extract induces senescence in HeLa cells through the down-regulation of telomerase. Colony formation and cell proliferation were inhibited in a dose-dependent manner, corresponding with telomerase inhibition.


Pancreas ◽  
2008 ◽  
Vol 37 (4) ◽  
pp. 475
Author(s):  
M. J. Heiferman ◽  
M.B. Ujiki ◽  
M. Reza Salabat ◽  
M. J. Strouch ◽  
D. M. Heiferman ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


Sign in / Sign up

Export Citation Format

Share Document