scholarly journals Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia

2019 ◽  
Vol 3 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Hassan Awada ◽  
Yasunobu Nagata ◽  
Abhinav Goyal ◽  
Mohammad F. Asad ◽  
Bhumika Patel ◽  
...  

Abstract Somatic TET2 mutations (TET2MT) are frequent in myeloid neoplasia (MN), particularly chronic myelomonocytic leukemia (CMML). TET2MT includes mostly loss-of-function/hypomorphic hits. Impaired TET2 activity skews differentiation of hematopoietic stem cells toward proliferating myeloid precursors. This study was prompted by the observation of frequent biallelic TET2 gene inactivations (biTET2i) in CMML. We speculated that biTET2i might be associated with distinct clinicohematological features. We analyzed TET2MT in 1045 patients with MN. Of 82 biTET2i cases, 66 were biTET2MT, 13 were hemizygous TET2MT, and 3 were homozygous TET2MT (uniparental disomy); the remaining patients (denoted biTET2− hereafter) were either monoallelic TET2MT (n = 96) or wild-type TET2 (n = 823). Truncation mutations were found in 83% of biTET2i vs 65% of biTET2− cases (P = .02). TET2 hits were founder lesions in 72% of biTET2i vs 38% of biTET2− cases (P < .0001). In biTET2i, significantly concurrent hits included SRSF2MT (33%; P < .0001) and KRAS/NRASMT (16%; P = .03) as compared with biTET2−. When the first TET2 hit was ancestral in biTET2i, the most common subsequent hits affected a second TET2MT, followed by SRSF2MT, ASXL1MT, RASMT, and DNMT3AMT. BiTET2i patients without any monocytosis showed an absence of SRSF2MT. BiTET2i patients were older and had monocytosis, CMML, normal karyotypes, and lower-risk disease compared with biTET2− patients. Hence, while a second TET2 hit occurred frequently, biTET2i did not portend faster progression but rather determined monocytic differentiation, consistent with its prevalence in CMML. Additionally, biTET2i showed lower odds of cytopenias and marrow blasts (≥5%) and higher odds of myeloid dysplasia and marrow hypercellularity. Thus, biTET2i might represent an auxiliary assessment tool in MN.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1805-1805
Author(s):  
Hassan Awada ◽  
Yasunobu Nagata ◽  
Abhinav Goyal ◽  
Mohammad Fahad B. Asad ◽  
Bhumika J. Patel ◽  
...  

Abstract Genomic data has led to the identification of bio-markers of morphological features and disease sub-entities in myeloid neoplasia (MN). Somatic TET2 mutations (TET2MT) are frequently found in MN, particularly in chronic myelomonocytic leukemia (CMML). TET2MT are mostly loss-of-function and hypomorphic hits leading to inactivation of TET2 protein. In fact, impaired TET2 activity skews the differentiation of hematopoietic stem cells toward proliferating myeloid precursors favoring myeloid tumorigenesis. However, the contribution of TET2MT to clinico-hematological features in MN has been controversial, possibly due to studies containing too few patients relative to the combinatorial diversity of co-occurring lesions. We recently reported on the clonal architecture of TET2MT in patients with MN. Of these, 40% of the patients harbored biallelic TET2MT (biTET2MT). Further analysis showed a frequent occurrence of biallelic TET2 inactivation (biTET2i). To date, only a few studies have investigated the clinical consequences of biTET2i in MN. We hypothesized that the presence of biTET2i identifies a group of patho-morphological features that independently define a distinct MN subtype. To test our hypothesis, we studied correlations between mutational configuration, clinico-hematological/morphological features and survival outcomes in cases that were biTET2ivs. not (biTET2-), combining whole exome and targeted deep sequencing, SNP-arrays and conventional cytogenetics. Among 1,001 clinically annotated MN patients, 82 were biTET2i (66 biTET2MT, 13 hemizygous TET2MT and 3 homozygous TET2MT, i.e. UPD) and 919 were biTET2- (96 monoallelicTET2MT and 823 wild type). TET2 hits were ancestral lesions in 72% of biTET2ivs. 38% in biTET2- cases (P<.0001). When the 1stTET2 hit was ancestral in biTET2i, the most common subsequent hit was a 2ndTET2MT, followed by SRSF2MT, ASXL1MT, KRASMT/NRASMT and DNMT3AMT. Truncation mutations (frameshift or nonsense variants) were found in 83% of biTET2ivs. 65% of biTET2- cases (P=.02). A second TET2 hit in biTET2MT cases significantly increases the accrual of additional truncating changes. Furthermore, biTET2i were significantly enriched for additional hits in SRSF2MT (33%; P<.0001) and KRASMT/NRASMT (16%; P=.03) while biTET2- for TP53MT (11%; P=.03). SRSF2MT was also found to be significantly associated with biTET2i when compared to monoallelicTET2MT (P=.02). In contrast, biTET2i cases showed absence of SRSF2MT in the absence of monocytosis. We then assessed associations of biTET2i with specific genotype/phenotype. Clinical analyses revealed that cases with biTET2i compared to cases with biTET2- were older (91% ≥60 years vs. 74%, P=.0004) and more commonly had normal karyotype (65% vs. 45%; P=.0007). BiTET2i were enriched in patients with CMML1/2 (44% vs. 9%; P<.0001), and predominantly in lower-risk cases (62% vs. 47% in biTET2-; P=.003). While a second TET2 hit occurred frequently, biTET2i did not portend faster progression but rather associated with monocytic differentiation, consistent with its prevalence in CMML. In addition, among biTET2i with SRSF2MT or KRASMT/NRASMT, CMML was diagnosed in 70% (P=.001) and 77% (P=.01) of the cases, respectively, significantly higher than what was seen in the biTET2i population (44%). In biTET2- cases, leukopenia (81%; P<.0001), neutropenia (52%; P=.008), pancytopenia (27%; P=.008) and increased marrow blast percentages (≥5% in 33%; P=.01) were more prevalent than in biTET2i cases, which in return co-segregated with monocytosis (84%; P<.0001), marrow hypercellularity (cellularity >70% in 67%; P<.0001) and marked myeloid dysplasia (68%; P=.0003). Given our observation of a highly significant (P<.0001) relationship between biTET2i, CMML diagnosis and/or monocytosis, we also evaluated patients without frank diagnosis of CMML (CMML-) and compared biTET2ivs.biTET2- for associations with monocytosis and myeloid dysplasia, two hallmarks of CMML. Increased monocyte counts among CMML-cases were significantly overrepresented in biTET2i cases (72%; P=.03) vs.biTET2- (55%) as was myeloid dysplasia (72% vs. 46%; P=.0001). Lastly, biTET2i as a sole hit or in combination with other hits did not influence survival outcomes. In sum, biTET2i invariantly associates with distinct morphological and clinical phenotype. It may thus represent an early diagnostic marker of morphologic MN sub-entities. Disclosures Nazha: MEI: Consultancy. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Maciejewski:Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy; Apellis Pharmaceuticals: Consultancy.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S106-S106
Author(s):  
Nawar Matti ◽  
Ruifang Zheng ◽  
Khalid Algarrahi ◽  
Albert Alhatem ◽  
Xinlai Sun ◽  
...  

Abstract Objectives Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy with both myelodysplastic and myeloproliferative features. The clinical and pathological features of CMML are highly heterogeneous. It was reported that Hispanic whites had an age-adjusted lower incidence rate of CMML compared to non-Hispanic whites. The aim of this study is to define the cytogenetic and genomic landscape of Hispanic CMML patients and explore their potential clinical significance. Methods Clinically relevant cytogenetic results and 40-gene molecular profiles of Hispanic CMML patients in Puerto Rico (PR) from 2009 to 2018 were obtained retrospectively. Results Total 111 Hispanic CMML patients from PR were diagnosed in our institute from 2009 to 2018. The age range was from 46 to 96 years with a median age of 74. Sixty-five were male and 46 were female. The epidemiological features are similar to that in a general CMML patient population. In total, 107 patients had karyotypes available; 17 patients had abnormal karyotype (17/107, ~16%). Compared with general CMML patients, Hispanic CMML patients had a significantly lower rate of cytogenetic abnormalities (30% vs 16%). Among total 111 Hispanic CMML patients, 40-gene myeloid molecular profiles were performed in 56 CMML patients. Fifty-five out of 56 patients had mutations identified (~98.2%). The most frequent mutated genes were TET2, SRSF2, ASXL1, NRAS, and ZRSR2. Twenty-six of 56 patients (~46.4%) had mutated TET2/wild-type ASXL1. Previous studies indicated that mutated ASXL1, NRAS, RUNX1, and SETBP1 likely associate with an unfavorable prognosis in a general CMML patient population. Mutated TET2 with wild-type ASXL1 (muTET2/wtASXL1) may associate with a favorable prognosis. Compared with general CMML patients, Hispanic CMML patients in this study had relatively lower mutational rates in ASXL1 (30.4% vs 37.0%), NRAS (10.7% vs 11.7%), RUNX1 (5.3% vs 7.9%), and SETBP1 (5.3% vs 8.9%) and a higher rate of muTET2/wtASXL1 (46.4% vs 37.8%). Conclusion Hispanic CMML patients from PR had a significantly lower rate in cytogenetic abnormalities; relatively lower mutational rates in ASXL1, NRAS, RUNX1, and SETBP1; and a higher mutational rate in muTET2/wtASXL1. The findings raise a possibility of a better prognosis in Hispanic CMML patients and could be one of the explanations of a lower incidence rate of CMML in Hispanic population.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 296-296 ◽  
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Christiane Eder ◽  
Nicholas C.P. Cross ◽  
Claudia Haferlach ◽  
...  

Abstract Abstract 296 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Recently, we investigated 81 CMML cases (45 CMML-1, 36 CMML-2) diagnosed between 10/2005 - 9/2008, which had been characterized by chromosome banding analysis and mutation analysis in 6 candidate genes: Mutations were detected in TET2 (44.4%), CBL (22.2%), NRAS (22.2%), KRAS (12.3%), JAK2 (9.8%), RUNX1 (8.7%) (Kohlmann et al., J Clin Oncol. 2010 Jul 19). We now applied amplicon-based deep-sequencing using the small volume Titanium chemistry assay (454 Life Sciences, Branford, CT) to investigate additional 4 candidate genes: IDH1 (exon 4), IDH2 (exon 4) and NPM1 (exon 12) (at known mutational hotspot regions) and the complete coding region of EZH2. EZH2 encodes a catalytic subunit of the polycomb repressive complex 2, a highly conserved histone H3 lysine 27 methyltransferase that influences stem cell renewal. Mutations in EZH2 were recently described to play a role in MPN/MDS. The sequencing library preparation for IDH1, IDH2, NPM1, and EZH2, in total 22 amplicons, was performed using 48.48 Access Array technology (Fluidigm, South San Francisco, CA) to cope with the number of amplicons. In median, 498 reads per amplicon were obtained, thus yielding sufficient coverage for detection of mutations with high sensitivity. After excluding polymorphisms and silent mutations aberrations were detected in IDH1 (1/81; 1.2%), IDH2 (3/81; 3.7%), NPM1 (1/81; 1.2%), and EZH2 (10/81; 12.3%). Another gene recently described in hematological diseases is ASXL1 (additional sex combs like 1) on chromosome 20q11.1. Therefore, the hotspot region of ASXL1 exon 12 was additionally investigated by Sanger sequencing in those 20 cases, in which no mutation had been observed thus far. Nine of these 20 cases (45%) harbored a mutation in ASXL1, thus only 11 cases (13.6%) remained in this cohort in which no mutation was detected. Summarizing this data, 86.4% of these CMMLs harbored at least one molecular aberration with a median of two genes mutated (range 1–4). In more detail, we observed 11 novel distinct EZH2 mutations in ten patients: 7 missense, 3 frameshifts (2 deletions, 1 insertion), and one splice site mutation. EZH2 mutations were found to be heterogeneous and were spread over several exons, predominantly located in the four conserved regions (6/11 in the conserved SET domain; e.g. H680R, N659S). No case revealed a Tyr641 of EZH2 mutation as described for follicular and diffuse large B-cell lymphomas. In median, the burden of EZH2 mutations was 42.5% of sequencing reads per patient (range 1.4–98%). Similarly, a high mutation burden was detected in RUNX1 (median 46.7%), TET2 (median 44.6%), and CBL (median 42.5%) whereas the burden was low in RAS pathway alterations, i.e. NRAS (median 11.1%), KRAS (median 27%), or JAK2 V617F mutations (median 6.9%). With respect to associations of distinct mutations no specific pattern was observed, i.e. EZH2 mutations were concomitantly detected with TET2 (4/10), RUNX1 (3/10), CBL (3/10), JAK2 (3/10), NRAS (2/10), KRAS (1/10), and IDH2 (1/10), respectively. Further, EZH2 mutations were associated neither with morphologic CMML subtype or dysplastic or myeloproliferative characteristics nor with age, white blood cell count, thrombocytes count, or hemoglobin. However, with respect to clinical data a very poor outcome was observed for patients that carried EZH2 mutations compared to EZH2 wild-type cases (median OS 4.3 vs. 130.4 months; p<0.001). In contrast, a significantly better outcome was seen for patients who carried TET2 mutations compared to TET2 wild-type cases (median OS 130.4 vs. 53.6 months, p=0.013). Subsequently, we performed a survival analysis taking both EZH2 and TET2 mutations into account. Here, the cohort was significantly separated into three distinct prognostic groups, i.e. EZH2-mutated with a poor median OS of 4.3 months, EZH2/TET2 wild-type with a median OS of 90 months and TET2-mutated cases with a median OS of 130.4 months (p<0.001). In conclusion, our study revealed molecular mutations in 86.4% of 81 CMML patients providing new insights into the molecular heterogeneity of this disease. Besides alterations in TET2, CBL, ASXL1, and the RAS pathway, EZH2 is targeted by various types of frameshift and point mutations and is a novel biomarker with unfavorable prognosis and clinical utility. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership, Research Funding. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2381-2381
Author(s):  
Teresa Field ◽  
Janelle Perkins ◽  
Taiga Nishihori ◽  
Joseph Pidala ◽  
Hugo F. Fernandez ◽  
...  

Abstract Abstract 2381 Allogeneic hematopoietic cell transplantation (HCT) remains the only curative treatment strategy for patients with Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML). Recent reduction of the transplant related toxicity has permitted the expansion of empiric age limitations for HCT up to 75 years. There has been limited comparative data on HCT focusing on donor availability in patients with MDS/CMML. Between January 2004 and September 2009, a total of 255 new patients (NP) with a diagnosis of MDS or CMML were evaluated for HCT at Moffitt Cancer Center. This report describes the outcomes of these patients with emphasis on donor availability. Donor Search Results: Of the 255 NP, 58 did not undergo a donor search. Reasons for not proceeding were as follows: Medicare declined coverage due to age >65 (18), waiting as have low risk disease (15), patient declined (6), patient seen as second opinion only (7) and patient was not eligible for HCT (12). These patients were not included in the survival analysis. Of the 197 patients who had a donor search initiated, a sibling (SIB) matched unrelated (MUD) or single HLA antigen/allele mismatch (mMUD) unrelated adult donor was found in 173 patients. A suitable adult donor was not identified in the remaining 24 patients. To mitigate bias due to factors giving a survival advantage to patients who were stable enough to survive the donor and proceed to HCT, the survival analysis included only those patients alive 90 days after the donor search was initiated. We have been able to identify donors within this time frame for 99% of the patients who ever found one, although time to transplant is longer. At the 90 days landmark, there were 164 patient in the Donor cohort, and 19 patients in the No Donor cohort. Donor Cohort: The median age was 56.6 yrs (18.5 – 73.5). Ninety-seven patients (59%) were older than 55 yrs and 26 (16%) were above 65 yrs. At the time of the transplant consult, IPSS risk was Low (10), Int-1 (44), Int-2 (48), High (25), AML (21), CMML (13), or not evaluable (NE) (3). Donors included SIB (60), MUD (75) and mMUD (29). Median follow-up of surviving patients is 27.7months (7.2 – 70.7). No Donor Cohort: Median age was 57.4 yrs (32.6 – 68.1) with 12 patients (63%) older than 55 yrs and 3 (16%) patients older than 65 years of age. IPSS at initiation of the donor search was Int-1 (5), Int-2 (6), High (5), AML (1) and CMML (2). Median follow-up is 9.2 months (1.4 – 61.5). Of the 19 patients with no donor, 3 patients received an umbilical cord blood HCT elsewhere and were analyzed by intent to treat. Outcomes: Patients with a donor had significantly improved overall survival from time of donor search vs. patients with no donor (P=0.007) with 2 year OS of 48% vs. 23%, respectively. Median survival for the donor group was 22.2 months [95% CI 14.7 – 35.7] vs. 10.1 months for those without a donor [95% CI 2.3 – 14.7]. Transplant: Of the 164 patients with a donor, 121 (74%) patients received the planned allogenic transplants. The 2-year overall survival (OS) after transplantation is similar for SIB (51%), MUD (39%) or mMUD (68%) transplant recipients (P=0.4), and also similar by age below or above 55 years (P=0.7). These data demonstrate that most patients with MDS or CMML can have a suitable donor identified and proceed to HCT. Overall survival is significantly improved for those patients who have a suitable sibling or unrelated donor. Disclosures: Lancet: Eisai: Consultancy; Celgene: Honoraria. Alsina: Millenium: Consultancy, Research Funding; Celgene: Research Funding; Novartis: Consultancy. List: Celgene: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1402-1402
Author(s):  
Hideki Makishima ◽  
Anna M Jankowska ◽  
Valeria Visconte ◽  
Ramon V. Tiu ◽  
Kathryn M Guinta ◽  
...  

Abstract Abstract 1402 Chronic myelomonocytic leukemia (CMML) is characterized by monocytic proliferation, cytomorphologic dysplasia and frequent progression to acute myelogeneous leukemia (AML). The molecular basis of CMML is poorly defined, although somatic mutations in a number of genes have recently been identified in a proportion of patients (epigenetic regulatory genes, spliceosomal genes, apoptosis genes, growth signal transducers and others). We performed a comprehensive analysis of molecular lesions, including somatic mutations detected by sequencing and chromosomal abnormalities investigated by metaphase and SNP-array karyotyping. We have selected a cohort of 72 patients (36 CMML1, 16 CMML2 and 20 sAML evolved from CMML). Our mutational screen performed in stages (as new mutations were discovered by our and other groups) and currently reveals mutations in UTX in 8%, DNMT3A in 9%, CBL in 14%, IDH1/2 in 4%, KRAS in 2.7%, NRAS in 4.1%, JAK2 in 1%, TET2 in 48%, ASXL1 in 43%, EZH2 in 5.5%, RUNX1 37%. Based on the discovery of various spliceosomal mutations in myeloid malignancies, novel mutations were also found in CMML, in U2AF1 in 12%, SF3B1 in 14%, SFRS19 in 6 % of cases tested. Chromosomal defects were detected in 60% of patients. In particular, a high frequency of somatic uniparental disomy (sUPD) were identified 71% of patients with abnormal cytogenetics, including UPD1p (N=3), UPD7q (N=8), UPD4q (N=6), UPD2p (N=2), UPD17q (N=2), UPD11q (N=5), UPDX (N=1), UPD21q (N=2). Some of the detected mutations were homozygous through their association with sUPD as for example for 3 EZH2, 1 UTX, 6 TET2, 2 DNMT3A, 5 CBL, 1 NRAS, 1 U2AF1 mutations. Furthermore, UPD17p implies that a P53 mutation is also present in this case as previously LOH17p was shown to be invariably associated with P53 mutations. Similarly, 2 cases of UPD17q imply that homozygous mutation of SRSF2, which is one of the Serine/arginine-rich splicing factor, may be present in this location and the mutation analysis is ongoing. In over 90% of >1 mutation was found but many patients harbored multiple mutations with frequent combinations of TET2/CBL or TET2/ASXL1 as well as RUNX1 and U2AF1 serving as examples. There was an accumulation of mutations from sAML, CMML2 and CMML1 suggesting stepwise accumulation of lesions. In serial studies, some of the mutations were present at the inception (e.g., TET2, ASXL1 and DNMT3A) in some cases originally heterozygous mutations were also while other can occur in the course of disease (e.g. CBL). RAS and DNMT3A mutations were associated with a higher blasts count. In sum, combined analysis of molecular lesions in CMML reveals that similar phenotype may be a result of diverse mutations associated with seemingly unrelated pathways and that clinical phenotype may be a result of a combination of mutations which accumulate as the disease progresses. Survival analyses will require large cohorts to account for various confounding factors including the presence of multiple chromosomal abnormalities and mutations in one patient, however currently EZH2, DNMT3 and CBL mutations appear to convey less favorable prognosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1365-1365
Author(s):  
Jumpei Yamazaki ◽  
Rodolphe F Taby ◽  
Aparna Vasanthakumar ◽  
Trisha Macrae ◽  
Kelly R Ostler ◽  
...  

Abstract Abstract 1365 TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30 patients). By contrast, only 1/30 patients had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A. By bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutant and wild-type cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We confirmed only two non-CpG island promoters, AIM2 and SP140, as hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14 475 genes) previously found to be hypermethylated in TET2 mutant cases. This finding shows that hypermethylation of both AIM2 and SP140 are bona fide markers of TET2 mutant cases in CMML. On the other hand, total 5-methylcytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases. Thus, TET2 mutations have a limited impact on promoter DNA methylation in CMML. To confirm this, we performed genome-wide analysis using a next-generation sequencing method for DNA methylation levels in three TET2 mutant cases. TET2 mutant CMMLs had an average of 230 (1.9%) promoter CpG island sites hypermethylated compared to normal blood, which is close to what is generally observed when one compares cancer to normal. By contrast, all three cases had near normal to increased levels of methylation outside CpG islands. The median methylation levels in non-promoter, non-CpG island sites was 88.7% in normal blood compared to 91.7%, 92.1% and 94.6% in the three TET2 mutant cases. Thus, TET2 mutant CMMLs escape the general hypomethylation phenomenon seen in many cancers. All together, our data suggest that TET2 mutant CMML cases may have distinct DNA methylation patterns primarily outside gene promoters. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (11) ◽  
pp. 2612-2614 ◽  
Author(s):  
Norio Shiba ◽  
Daisuke Hasegawa ◽  
Myoung-ja Park ◽  
Chisato Murata ◽  
Aiko Sato-Otsubo ◽  
...  

Abstract Familial platelet disorder with a propensity to develop acute myeloid leukemia (FPD/AML) is a rare autosomal dominant disease characterized by thrombocytopenia, abnormal platelet function, and a propensity to develop myelodysplastic syndrome (MDS) and AML. So far, > 20 affected families have been reported. Recently, a second RUNX1 alteration has been reported; however, no additional molecular abnormalities have been found so far. We identified an acquired CBL mutation and 11q-acquired uniparental disomy (11q-aUPD) in a patient with chronic myelomonocytic leukemia (CMML) secondary to FPD with RUNX1 mutation but not in the same patient during refractory cytopenia. This finding suggests that alterations of the CBL gene and RUNX1 gene may cooperate in the pathogenesis of CMML in patients with FPD/AML. The presence of CBL mutations and 11q-aUPD was an important “second hit” that could be an indicator of leukemic transformation of MDS or AML in patients with FPD/AML.


Sign in / Sign up

Export Citation Format

Share Document