Analyses of 81 Chronic Myelomonocytic Leukemia (CMML) for EZH2, TET2, ASXL1, CBL, KRAS, NRAS, RUNX1, IDH1, IDH2, and NPM1 Revealed Mutations In 86.4% of All Patients with TET2 and EZH2 Being of High Prognostic Relevance

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 296-296 ◽  
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Christiane Eder ◽  
Nicholas C.P. Cross ◽  
Claudia Haferlach ◽  
...  

Abstract Abstract 296 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Recently, we investigated 81 CMML cases (45 CMML-1, 36 CMML-2) diagnosed between 10/2005 - 9/2008, which had been characterized by chromosome banding analysis and mutation analysis in 6 candidate genes: Mutations were detected in TET2 (44.4%), CBL (22.2%), NRAS (22.2%), KRAS (12.3%), JAK2 (9.8%), RUNX1 (8.7%) (Kohlmann et al., J Clin Oncol. 2010 Jul 19). We now applied amplicon-based deep-sequencing using the small volume Titanium chemistry assay (454 Life Sciences, Branford, CT) to investigate additional 4 candidate genes: IDH1 (exon 4), IDH2 (exon 4) and NPM1 (exon 12) (at known mutational hotspot regions) and the complete coding region of EZH2. EZH2 encodes a catalytic subunit of the polycomb repressive complex 2, a highly conserved histone H3 lysine 27 methyltransferase that influences stem cell renewal. Mutations in EZH2 were recently described to play a role in MPN/MDS. The sequencing library preparation for IDH1, IDH2, NPM1, and EZH2, in total 22 amplicons, was performed using 48.48 Access Array technology (Fluidigm, South San Francisco, CA) to cope with the number of amplicons. In median, 498 reads per amplicon were obtained, thus yielding sufficient coverage for detection of mutations with high sensitivity. After excluding polymorphisms and silent mutations aberrations were detected in IDH1 (1/81; 1.2%), IDH2 (3/81; 3.7%), NPM1 (1/81; 1.2%), and EZH2 (10/81; 12.3%). Another gene recently described in hematological diseases is ASXL1 (additional sex combs like 1) on chromosome 20q11.1. Therefore, the hotspot region of ASXL1 exon 12 was additionally investigated by Sanger sequencing in those 20 cases, in which no mutation had been observed thus far. Nine of these 20 cases (45%) harbored a mutation in ASXL1, thus only 11 cases (13.6%) remained in this cohort in which no mutation was detected. Summarizing this data, 86.4% of these CMMLs harbored at least one molecular aberration with a median of two genes mutated (range 1–4). In more detail, we observed 11 novel distinct EZH2 mutations in ten patients: 7 missense, 3 frameshifts (2 deletions, 1 insertion), and one splice site mutation. EZH2 mutations were found to be heterogeneous and were spread over several exons, predominantly located in the four conserved regions (6/11 in the conserved SET domain; e.g. H680R, N659S). No case revealed a Tyr641 of EZH2 mutation as described for follicular and diffuse large B-cell lymphomas. In median, the burden of EZH2 mutations was 42.5% of sequencing reads per patient (range 1.4–98%). Similarly, a high mutation burden was detected in RUNX1 (median 46.7%), TET2 (median 44.6%), and CBL (median 42.5%) whereas the burden was low in RAS pathway alterations, i.e. NRAS (median 11.1%), KRAS (median 27%), or JAK2 V617F mutations (median 6.9%). With respect to associations of distinct mutations no specific pattern was observed, i.e. EZH2 mutations were concomitantly detected with TET2 (4/10), RUNX1 (3/10), CBL (3/10), JAK2 (3/10), NRAS (2/10), KRAS (1/10), and IDH2 (1/10), respectively. Further, EZH2 mutations were associated neither with morphologic CMML subtype or dysplastic or myeloproliferative characteristics nor with age, white blood cell count, thrombocytes count, or hemoglobin. However, with respect to clinical data a very poor outcome was observed for patients that carried EZH2 mutations compared to EZH2 wild-type cases (median OS 4.3 vs. 130.4 months; p<0.001). In contrast, a significantly better outcome was seen for patients who carried TET2 mutations compared to TET2 wild-type cases (median OS 130.4 vs. 53.6 months, p=0.013). Subsequently, we performed a survival analysis taking both EZH2 and TET2 mutations into account. Here, the cohort was significantly separated into three distinct prognostic groups, i.e. EZH2-mutated with a poor median OS of 4.3 months, EZH2/TET2 wild-type with a median OS of 90 months and TET2-mutated cases with a median OS of 130.4 months (p<0.001). In conclusion, our study revealed molecular mutations in 86.4% of 81 CMML patients providing new insights into the molecular heterogeneity of this disease. Besides alterations in TET2, CBL, ASXL1, and the RAS pathway, EZH2 is targeted by various types of frameshift and point mutations and is a novel biomarker with unfavorable prognosis and clinical utility. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership, Research Funding. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1783-1783 ◽  
Author(s):  
Vera Grossmann ◽  
Valentina Artusi ◽  
Susanne Schnittger ◽  
Frank Dicker ◽  
Sabine Jeromin ◽  
...  

Abstract Abstract 1783 TP53 is one of the most important cell-cycle regulator genes and its tumor suppressor activity is fundamental in cellular responses. Mutations in TP53 are known to influence clinical outcome in diverse diseases. In particular, a relationship between TP53 mutations and a poor prognosis has been established in chronic lymphocytic leukemia (CLL), which is one of the most commonly diagnosed lymphoid malignancies in Western countries. Thus far, it has been demonstrated that TP53 mutations are associated with codon72 polymorphism in different diseases e.g. breast cancer, lung cancer, head and neck squamous cell carcinoma, and that this variant could determine cancer susceptibility. In this study, we investigated the overall TP53 mutation rate in 511 CLL and focused on the codon72 polymorphism (rs1042522) in exon 4 (transcript-ID: ENST00000269305). We initially examined the published available 1000 Genome Project results of the European cohort: from a total of 283 genomes analyzed, 137 showed an ARG/ARG genotype (48%), 124 an ARG/PRO genotype (43%) and 22 a PRO/PRO genotype (7.7%). Secondly, in order to determine a potential association between this polymorphic variant and mutations in the TP53 gene, we investigated 511 thoroughly characterized patients with CLL, all diagnosed by immunophenotyping in our laboratory. For molecular analyses, all cases were analyzed for TP53 mutations (exon 4 to exon 11) either by DHPLC and subsequent Sanger sequencing (n=210/511), or using a sensitive next-generation amplicon deep-sequencing assay (n=301/511) (454 Life Sciences, Branford, CT). We observed the occurrence of the three distinct genotypes (ARG/ARG, ARG/PRO, PRO/PRO) of codon72 in the CLL cohort and detected ARG/ARG as the most common genotype (63%), followed by ARG/PRO (31.7%), and PRO/PRO (5.3%); very similar to the distribution of the codon72 polymorphism in the 1000 Genome Project data. Moreover, mutations in TP53 were detected in 63/511 patients resulting in an overall mutation rate of 12%, which reflects the expected mutation rate in this disease. Importantly, as already demonstrated in other malignancies, we here present that also in CLL patients harboring a PRO/PRO genotype a significantly higher frequency of TP53 mutations (9/27, 33%) was observed compared to ARG/ARG (41/321, 13%, P=.037) and ARG/PRO (13/163, 8%, P=.012). With respect to the clinical outcome we confirmed a generally poor survival for the TP53 mutated cases as compared to TP53 wild-type patients (n=23 vs. 189 with clinical data available, alive at 7 years: 29.6% vs. 88.1%; P<.001). Moreover, the impact of the three distinct genotypes on outcome was analyzed. However, no correlation was detectable, neither in the cohort of TP53 mutated cases (P=.225) nor in the TP53 wild-type patients (P=.190). In summary, we demonstrated a significant association between the codon72 allelic variant and TP53 mutation rate in our CLL cohort. Patients with a PRO/PRO genotype showed a significantly higher frequency of TP53 mutations than all other genotypes. However, no prognostic impact of codon72 allelic variant was observed, neither in the TP53 wild-type nor in the TP53 mutated cohort. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Artusi:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Dicker:MLL Munich Leukemia Laboratory: Employment. Jeromin:MLL Munich Leukemia Laboratory: Employment. Boeck:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kohlmann:MLL Munich Leukemia Laboratory: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 274-274 ◽  
Author(s):  
Susanne Schnittger ◽  
Manja Meggendorfer ◽  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Kenichi Yoshida ◽  
...  

Abstract Abstract 274 Introduction: Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. We previously investigated 81 CMML cases and detected a number of genes frequently mutated (TET2 44.4%, CBL 22.2%, NRAS 22.2%, KRAS 12.3%, JAK2 9.8%, RUNX1 8.7%, EZH2 12.3% (Kohlmann et al., JCO, 2010; Grossmann et al., Leukemia, 2011). Recently, we detected a new candidate gene, SRSF2 (serine/arginine-rich splicing factor 2, also known as SC35) that is a component of the RNA splicing machinery and found it to be frequently mutated in MDS. Aim: As CMML has been increasingly characterized by a growing number of genes during the last years we here analyzed both the frequency of SRSF2 mutations in this entity and the relevance in the context of other previously described gene mutations, as well as to look for a potential prognostic implication. Patients and Methods: In total, 163 cases with CMML (CMML-1 n=105, CMML-2 n=58) were included. The cohort comprised 115 males and 48 females with a median age of 72.8 yrs (range: 21.9 – 88.8 yrs) including all 81 pts that have been published previously. 112 cases (69%) had a normal karyotype and 51 (31%) showed aberrant karyotypes. The mutational hot spot region of SRSF2 around Proline codon 95 (P95) was analyzed by Sanger sequencing in all cases. Data on further mutations were available in respective subcohorts: ASXL1 (n=128), CBL (n=162), EZH2 (n=134), JAK2V617F (n=162), KRAS (n=140), NRAS (n=79), RUNX1 (n=156), TET2 (n=143), TP53 (n=80). Results:SRSF2 mutations of P95 were detected in 77/163 (47.2%) of all cases (49/105, 46.7% in CMML-1, and 28/58, 48.3% in CMML-2). In detail, 74 cases had a missense mutation leading to a change of P95 to P95H (n=33), P95L (n=24), P95R (n=16) or P95A (n=1). In further 3 cases a newly described 24 bp (8 amino acids) deletion starting at P95 was observed. All cases had a mutation load of approximately 50%. The mutations were correlated with higher age (73.3 yrs vs 68.7 yrs in the SRSF2wt cases, p=0.010) and higher hemoglobin levels (11.4 vs 10.5 g/dl in the SRSF2wt cases, p=0.019) whereas white blood cell counts were not different. Further, SRSF2 mutations were mutually exclusive of EZH2 mutations (0/12, 0% vs. 66/122, 54.1% in the EZH2wt, p<0.001) whereas a high coincidence occurred with RUNX1 mutations (22/35, 62.9% vs 52/121, 43% in the RUNX1wt, p=0.054) and TET2 mutations (50/82, 61% vs 18/61, 29.5% in the TET2wt, p<0.001). With respect to associations with all other gene mutations investigated and karyotype no specific pattern was observed. In the total cohort no impact of SRSF2 on survival was observed. Because of the high coincidence of SRSF2mut with RUNX1mut and TET2mut, we performed an analysis in these specific subcohorts. No impact of SRSF2mut in the TET2mut subcohort was found. Whereas in the RUNX1mut subcohort SRSF2mut had a favorable impact on overall survival compared to SRSF2wt (median OS: 108.0 months vs 41.8 months, p=0.05). Conclusions:SRSF2 has recently been described as a new marker in CMML and demonstrated to be useful to delineate further the genetic defects of this disease. This very frequent new mutation is characterized by higher age, higher hemoglobin levels and a high coincidence with TET2 and RUNX1 mutations. It is mutually exclusive of EZH2 mutations. In the subset of RUNX1 mutated CMML SRSF2 mutations demonstrated a favorable impact on outcome. Furthermore, for the first time a 24 bp deletion was observed in three cases that may provide further insight into the structural basis for the abnormal function of SRSF2. Disclosures: Schnittger: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1713-1713 ◽  
Author(s):  
Eric Padron ◽  
Jeffrey S. Painter ◽  
Adam W Mailloux ◽  
Jessica M. McDaniel ◽  
Christopher Bebbington ◽  
...  

Abstract Abstract 1713 Background: Chronic Myelomonocytic Leukemia (CMML) and Juvenile Myelomonocytic leukemia (JMML) are classified as MDS/MPN in the WHO classification system. Despite sharing clinical and histological features, CMML is characterized by a heterogeneous collection of molecular lesions while JMML is defined by well-established molecular aberrations clustered along the RAS pathway leading directly to GM-CSF hypersensitivity; a pathognomonic characteristic of JMML. Here we test whether a molecular signature for GM-CSF hypersensitivity in JMML, determined by the pSTAT5 activation assay, is also present in CMML and whether this signature clusters within a specific CMML subgroup. Methods: Cryopreserved bone marrow aspirates from 24 patients with newly diagnosed or relapsed CMML were obtained from the Moffitt Cancer Center Tissue Repository. Cells were thawed and rested in Stem Span H3000 with 10% FBS for 2 hours and then either starved for one hour in serum-free media, serum free group (n=12), or rested in Stem Span for an additional hour, serum group (n=12), prior to stimulation with G-CSF, IL-3, or GM-CSF for 15 minutes and then fixed and permeabilized with formaldehyde and methanol, as previously described. Samples were stained with an anti-pSTAT5(Y-694) antibody and analyzed by flow cytometry (Kotecha, Cancer Cell. 2009). Cells stained with isotype-control antibody were used to establish the threshold for basal STAT5 phosphorylation. Because STAT5 was constitutively phosphorylated in serum, and to a lesser extent in serum-free conditions, inducible cytokine activation was defined as the percentage of pSTAT5 positive cells above untreated samples in both CMML and healthy controls. A retrospective chart review was performed to obtain clinical variables including age, sex, WHO classification, Dusseldorf scoring system, MD Anderson scoring system, WBC, peripheral monocyte count, blast percentage, anemia, platelet count, splenomegaly, and metaphase cytogenetics. Results: The percentage of pSTAT5 responsive cells after G-CSF stimulation with doses up to 10 ng/ml was similar in cases and normal BM controls (p=0.14), whereas, a statistically significant increase in the percentage of inducible pSTAT5 positive cells was observed with GM-CSF 0.1 ng/ml (p=0.04), GM-CSF 1 ng/ml (p=0.02), and GM-CSF 10 ng/ml (p=0.01) in CMML BM cells compared to healthy donor BM cells, as shown in Figure 1. Using one standard deviation below the mean as a cut point, only 5 patients failed to show GM-CSF hypersensitivity in the serum (n=3) and serum-free groups (n=2), respectively. IL-3 and GM-CSF play similar roles in hematopoietic growth through the activation of JAK2/STAT5 and share a common beta-chain required for signaling. Signaling mediated by GM-CSF and IL3 converge to activate RAS and other downstream intermediates that regulate DNA synthesis, cell-cycle progression and suppression of apoptosis. The concentration of IL3 required to induce STAT5 phosphorylation was 10-fold greater than GM-CSF in CMML cells, but the percentage of cells responsive to IL3 was greater in CMML cases compared to controls at 10 ng/ml (p=0.02). Analysis of the percentage of GM-CSF hypersensitive cells and clinical parameters revealed no associations with age at onset, WHO classification, Dusseldorf scoring system, MD Anderson scoring system, blast percentage, anemia, platelet count, splenomegaly, or karyotype. The percentage of pSTAT5 positive cells with GM-CSF 0.1 ng/ml positively correlated with the total leukocyte (p=0.03) and total monocyte (p=0.02) count indicating that the JAK2/STAT5 signaling response is indicative of disease burden. Conclusions: Based on the threshold for cytokine stimulation and percentage of cells that display pSTAT5 induction, CMML appears to preferentially utilize GM-CSF for survival and/or expansion. Although RAS mutations were not assessed, CMML cells were preferentially sensitive to GM-CSF in newly diagnosed cases independent of cytogenetic abnormalities suggesting that JMML and CMML share biological features of GM-CSF hypersensitivity. Disclosures: Padron: KaloBios Pharmaceuticals, Inc.: Research Funding. Bebbington:KaloBios Pharmaceuticals, Inc.: Employment, Equity Ownership. Baer:KaloBios Pharmaceuticals, Inc.: Employment, Equity Ownership.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S106-S106
Author(s):  
Nawar Matti ◽  
Ruifang Zheng ◽  
Khalid Algarrahi ◽  
Albert Alhatem ◽  
Xinlai Sun ◽  
...  

Abstract Objectives Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy with both myelodysplastic and myeloproliferative features. The clinical and pathological features of CMML are highly heterogeneous. It was reported that Hispanic whites had an age-adjusted lower incidence rate of CMML compared to non-Hispanic whites. The aim of this study is to define the cytogenetic and genomic landscape of Hispanic CMML patients and explore their potential clinical significance. Methods Clinically relevant cytogenetic results and 40-gene molecular profiles of Hispanic CMML patients in Puerto Rico (PR) from 2009 to 2018 were obtained retrospectively. Results Total 111 Hispanic CMML patients from PR were diagnosed in our institute from 2009 to 2018. The age range was from 46 to 96 years with a median age of 74. Sixty-five were male and 46 were female. The epidemiological features are similar to that in a general CMML patient population. In total, 107 patients had karyotypes available; 17 patients had abnormal karyotype (17/107, ~16%). Compared with general CMML patients, Hispanic CMML patients had a significantly lower rate of cytogenetic abnormalities (30% vs 16%). Among total 111 Hispanic CMML patients, 40-gene myeloid molecular profiles were performed in 56 CMML patients. Fifty-five out of 56 patients had mutations identified (~98.2%). The most frequent mutated genes were TET2, SRSF2, ASXL1, NRAS, and ZRSR2. Twenty-six of 56 patients (~46.4%) had mutated TET2/wild-type ASXL1. Previous studies indicated that mutated ASXL1, NRAS, RUNX1, and SETBP1 likely associate with an unfavorable prognosis in a general CMML patient population. Mutated TET2 with wild-type ASXL1 (muTET2/wtASXL1) may associate with a favorable prognosis. Compared with general CMML patients, Hispanic CMML patients in this study had relatively lower mutational rates in ASXL1 (30.4% vs 37.0%), NRAS (10.7% vs 11.7%), RUNX1 (5.3% vs 7.9%), and SETBP1 (5.3% vs 8.9%) and a higher rate of muTET2/wtASXL1 (46.4% vs 37.8%). Conclusion Hispanic CMML patients from PR had a significantly lower rate in cytogenetic abnormalities; relatively lower mutational rates in ASXL1, NRAS, RUNX1, and SETBP1; and a higher mutational rate in muTET2/wtASXL1. The findings raise a possibility of a better prognosis in Hispanic CMML patients and could be one of the explanations of a lower incidence rate of CMML in Hispanic population.


2020 ◽  
Vol 21 (8) ◽  
pp. 3025 ◽  
Author(s):  
Klaus Geissler ◽  
Eva Jäger ◽  
Agnes Barna ◽  
Michael Gurbisz ◽  
Temeida Graf ◽  
...  

Although the RAS-pathway has been implicated as an important driver in the pathogenesis of chronic myelomonocytic leukemia (CMML) a comprehensive study including molecular and functional analyses in patients with progression and transformation has not been performed. A close correlation between RASopathy gene mutations and spontaneous in vitro myeloid colony (CFU-GM) growth in CMML has been described. Molecular and/or functional analyses were performed in three cohorts of 337 CMML patients: in patients without (A, n = 236) and with (B, n = 61) progression/transformation during follow-up, and in patients already transformed at the time of sampling (C, n = 40 + 26 who were before in B). The frequencies of RAS-pathway mutations (variant allele frequency ≥ 20%) in cohorts A, B, and C were 30%, 47%, and 71% (p < 0.0001), and of high colony growth (≥20/105 peripheral blood mononuclear cells) 31%, 44%, and 80% (p < 0.0001), respectively. Increases in allele burden of RAS-pathway mutations and in numbers of spontaneously formed CFU-GM before and after transformation could be shown in individual patients. Finally, the presence of mutations in RASopathy genes as well as the presence of high colony growth prior to transformation was significantly associated with an increased risk of acute myeloid leukemia (AML) development. Together, RAS-pathway mutations in CMML correlate with an augmented autonomous expansion of neoplastic precursor cells and indicate an increased risk of AML development which may be relevant for targeted treatment strategies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Claudia Haferlach ◽  
Beray Kazak ◽  
Sonja Schindela ◽  
...  

Abstract Abstract 417 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Here, we analyzed 81 CMML cases (45 CMML-1, 36 CMML-2). In chromosome banding analysis 59/76 (77.6%) patients showed a normal karyotype (data not availabel in 5 cases). Recurrent chromosome aberrations were trisomy 8 (n=6; 7.9%), monosomy 7 (n=3; 3.9%), and loss of the Y-chromosome (n=5; 6.6%). Fluorescence in situ hybridization (FISH) detected the deletion of one allele of the TET2 gene in 4/71 cases (5.6%). Thus, the majority of cases can not be genetically characterized by these techniques. Therefore, we applied next-generation sequencing (NGS) technology to investigate 7 candidate genes, represented by 43 PCR-products, at known mutational hotspot regions, i.e. CBL (exons 8 and 9), JAK2 (exons 12 and 14), MPL (exon 10), NRAS (exons 2 and 3), and KRAS (exons 2 and 3). In addition, complete coding regions were analyzed for RUNX1 (beta isoform) and TET2. NGS was performed using 454 FLX amplicon chemistry (Roche Diagnostics Corporation, Branford, CT). The median number of base pairs sequenced per patient was 9.24 Mb. For each target gene a median of 911 reads was generated (coverage range: 736-fold to 1606-fold). This approach allowed a high-sensitive detection of molecular mutations, e.g. detecting the JAK2 V617F mutation down to 1.16% of reads. In total, 146 variances were detected by this comprehensive molecular mutation screening (GS Amplicon Variant Analyzer software version 2.0.01). In 80.4% of variances consistent results were obtained after confirming NGS mutations with melting curve analysis and conventional sequencing. In the remaining discrepant variances (19.6%) NGS deep-sequencing outperformed conventional methods due to the higher sensitivity of the platform. After excluding 19 polymorphisms or silent mutations 127 distinct mutations in 61/81 patients (75.3%) were detected: CBL: n=21 point mutations and one deletion (18 bp) found in 20 cases (24%); JAK2: n=8 mutations (V617F) found in 8 cases (9.8%); MPL: no mutations found; NRAS: n=23 mutations found in 18 cases (22.2%); KRAS: n=12 mutations found in 10 cases (12.3%); RUNX1: n=6 point mutations and one deletion (14 bp) found in 7 cases (8.6%); and TET2: n=49 point mutations and 6 deletions (2-19 bp; 5/6 out-of-frame) found in 41 cases (50.6%). Furthermore, in 21 TET2-mutated cases 11 mutations previously described in the literature were detectable, whereas 28 cases carried novel mutations (n=28). In the cohort of TET2-mutated cases 17/41 (41.3%) patients harbored TET2 abnormalities as sole aberration. Interestingly, CBL mutations were found to be significantly associated with TET2 mutations (Fisher's exact test, p=0.008). In 17 of 20 (85.0%) CBL-mutated cases TET2 abnormalities were concomitantly observed. In contrast, no significant associations were found between any of the point mutations or deletions and the karyotype. There were also no associations observed between molecular aberrations and the diagnostic categories CMML-1 and CMML-2. With respect to clinical data a trend for better outcome was seen for patients that carried either or both TET2 and CBL mutations (median OS 130.4 vs. 17.3 months, alive at 2 yrs: 72.0% vs. 43.9%; p=0.13). In conclusion, 75.3% of CMMLs harbored at least one molecular aberration. In median 2 mutations per case were observed. Compared to limited data from the literature we detected not only a higher frequency of CBL mutations, but also add data on novel TET2 mutations. In particular, comprehensive NGS screening here for the first time has demonstrated its strength to further genetically characterize and delineate prognostic groups within this type of hematological malignancy. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Weiss:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1365-1365
Author(s):  
Jumpei Yamazaki ◽  
Rodolphe F Taby ◽  
Aparna Vasanthakumar ◽  
Trisha Macrae ◽  
Kelly R Ostler ◽  
...  

Abstract Abstract 1365 TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30 patients). By contrast, only 1/30 patients had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A. By bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutant and wild-type cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We confirmed only two non-CpG island promoters, AIM2 and SP140, as hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14 475 genes) previously found to be hypermethylated in TET2 mutant cases. This finding shows that hypermethylation of both AIM2 and SP140 are bona fide markers of TET2 mutant cases in CMML. On the other hand, total 5-methylcytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases. Thus, TET2 mutations have a limited impact on promoter DNA methylation in CMML. To confirm this, we performed genome-wide analysis using a next-generation sequencing method for DNA methylation levels in three TET2 mutant cases. TET2 mutant CMMLs had an average of 230 (1.9%) promoter CpG island sites hypermethylated compared to normal blood, which is close to what is generally observed when one compares cancer to normal. By contrast, all three cases had near normal to increased levels of methylation outside CpG islands. The median methylation levels in non-promoter, non-CpG island sites was 88.7% in normal blood compared to 91.7%, 92.1% and 94.6% in the three TET2 mutant cases. Thus, TET2 mutant CMMLs escape the general hypomethylation phenomenon seen in many cancers. All together, our data suggest that TET2 mutant CMML cases may have distinct DNA methylation patterns primarily outside gene promoters. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 407-407
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Claudia Haferlach ◽  
Tamara Alpermann ◽  
Melanie Wild ◽  
...  

Abstract Abstract 407 CpG methylation is an epigenetic modification that is important for cellular development. The DNMT3A gene, located on chromosome 2p23.3, encodes for a DNA methyltransferase and plays a central role in de novo CpG methylation. Recently, DNMT3A has been reported to be mutated in 22% of AML and 8% of MDS (Ley et al., N Engl J Med, 2010; Walter et al., Leukemia, 2011). Further, DNMT3A mutations were observed to be associated with a short overall survival in both diseases, respectively. In order to determine the role of DNMT3A mutations in leukemia we investigated two different entities by next-generation sequencing: 145 AML patients and 83 cases harboring a T-cell acute lymphoblastic leukemia (T-ALL). We applied an amplicon based deep-sequencing assay (454 Life Sciences, Branford, CT) in combination with the 48.48 Access Array technology (Fluidigm, South San Francisco, CA). The peripheral blood or bone marrow samples were obtained from untreated patients. The AML cohort was restricted to cases with normal karyotype (CN-AML). 87/145 (60%) cases were specifically selected to be wild-type for NPM1, FLT3-ITD, CEBPA, and MLL-PTD, whereas 58/145 (40%) samples were mutated in NPM1 (n=33) or double-mutated in NPM1 and FLT3-ITD (n=25). In our cohort of AML cases without mutations in NPM1, FLT3-ITD, CEBPA, and MLL-PTD, we observed a DNMT3A mutation frequency of 17.2% (15/87 cases). The DNMT3A mutation rate in the NPM1 mutated/FLT3 wild-type cases (16/33, 48.5%, P=0.001) and NPM1/FLT3-ITD mutated cases (19/25, 76%, P<0.001) was significantly higher, confirming the association of DNMT3A mutations with NPM1 and FLT3-ITD mutations that had been reported previously (Ley et al.). Interestingly, also in the cohort of T-ALL we detected patients that carried a DNMT3A mutation (16/83, 19.3%), which is very similar to the mutation frequency in AML, and has not been described yet. To further address the biology of DNMT3A mutations in acute leukemias we combined the AML and T-ALL cohorts and identified in total 31 distinct missense mutations in 65 patients (49 AML, 16 T-ALL). Most frequently, amino acid R882 located in exon 23 was mutated (n=29 cases). In addition, we identified 7 frame-shift alterations, 5 nonsense and 2 splice-site mutations. Moreover, 9 of the 65 mutated cases had two independent mutations. Focusing on AML, only three (6.1%) of the 49 DNMT3A-mutated cases were observed to harbor two different mutations concomitantly. In contrast, in the cohort of T-ALL we detected two different mutations in 6/16 (37.5%, P=0.003) cases. Further, in the cohort of AML, no homozygous mutation was detected, however, in the T-ALL group, two cases harbored a homozygous mutation. Therefore, only 3/49 AML (6.1%) cases, but 8/16 T-ALL (50%) cases showed biallelic mutation status (P<0.001). With respect to overall survival, no association was seen in the complete cohort of CN-AML cases (n=145). After limiting this cohort to the cases without mutations in NPM1, FLT3-ITD, CEBPA and MLL-PTD (n=87), an inferior survival was observed for DNMT3A-mutated patients as compared to DNMT3A wild-type patients (n=15 vs. n=72; alive at 2 years: 27.9% vs. 56.6%; P=0.048). Remarkably, also in the cohort of T-ALL a worse survival for patients with DNMT3A mutations was seen which has not been reported thus far (n=13 vs. n=64; alive at 1 years: 28.6% vs. 80.9%; P=0.001). Subsequently, we were interested whether gain-of-function mutations of the DNMT3A gene were associated with trisomy 2 and acquired uniparental disomy (aUPDs) of the short arm of chromosome 2 where DNMT3A is located. As such, we investigated 9 cases harboring a trisomy 2 (AML n=4, MDS n=4, and CMML n=1) and one MDS patient harboring an aUPD 2p, as confirmed by SNP microarray analyses (SNP Array 6.0, Affymetrix, Santa Clara, CA). Not all, but 3/9 cases with trisomy 2 harbored a DNMT3A mutation (one AML, MDS, and CMML case each), suggesting that duplication of DNMT3A mutations can enhance the effect of the mutation. Moreover, the single case with aUPD 2p also showed a mutation, further suggesting that LOH leading to loss of the wild-type DNMT3A may be another mechanism of disease leading to progression of leukemia. In conclusion, we here report on a high mutation rate of DNMT3A in both AML and T-ALL and independently confirmed an inferior overall survival in these two entities, respectively. This indicates a significant role of DNMT3A alterations in myeloid as well as in lymphoid neoplasms. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Wild:MLL Munich Leukemia Laboratory: Employment. Weissmann:MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1721-1721
Author(s):  
Sabine Jeromin ◽  
Wolfgang Kern ◽  
Richard Schabath ◽  
Tamara Alpermann ◽  
Niroshan Nadarajah ◽  
...  

Abstract Background: Relapse or refractory disease is a challenging clinical problem in the majority of chronic lymphocytic leukemia (CLL) patients. Treatment influences the clonal composition by selection and eventually induction of additional genetic abnormalities. Aim: To characterize the clonal evolution in relapsed CLL patients by deep-sequencing analysis of mutations in ATM, BIRC3, NOTCH1, POT1, SF3B1, SAMHD1 and TP53. Patients and Methods: Sequential samples of 20 relapsed CLL patients at three time-points were evaluated: A: at diagnosis (n=16) or in untreated state (n=4), B: at first relapse (n=20) and C: at second relapse (n=2). Patients were treated with diverse treatment schemes and had temporarily achieved either complete or partial remission during the course of the disease. The median time from diagnosis to first-line treatment was 13 months (1 - 169 months). All geneswere sequenced by a deep sequencing approach (Illumina, San Diego, CA). IGHV mutational status was determined by direct Sanger sequencing at time-point A. Chromosome banding analysis (CBA) and FISH data on del(17p), del(11q), trisomy 12 (+12), and del(13q) were available in 33/42 and 36/42 samples, respectively. Results: Initially, samples at first relapse were sequenced. Mutations in SF3B1 (6/20, 30%), TP53 (5/20, 25%), ATM (5/20, 25%), NOTCH1 (4/20, 20%), and SAMHD1 (3/20, 15%) were detected at high frequencies. No mutations were detected in BIRC3 and POT1. In total, 75% of cases presented with at least one mutation (Figure 1): 8 (40%) cases had one, 6 (30%) cases had two and one patient had three genes concomitantly mutated (mut). Patients were also analyzed for IGHV mutational status at diagnosis and presented with unmutated status at a frequency of 85% (17/20). Subsequently, samples from cases with mutations were analyzed at time-point A. In 12/15 (80%) cases the mutations at relapse were already detectable at time-point A with a similar load indicating presence of the main clone before and after chemotherapy. However, in 7/15 (47%) patients new gene mutations were acquired either additionally to existing mutations (n=4) or in previously wild-type cases (n=3). In 5/7 (71%) cases mutations were located in TP53. TP53 mut were the only mutations that were not detected in samples before treatment (sensitivity of 3%). Thus, TP53 mutations might have been initiated by chemotherapy or exist in a minor subclone subsequently selected by chemotherapy. Furthermore, only 4 cases had low-level mutations (3-6% mutation load) at diagnosis in either SAMHD1 or SF3B1 that eventually increased in their burden during disease course. Of note, in two patients a multibranching clonal evolution could be identified (#2, #9). For patient #2 three time-points were analyzed. At diagnosis 2 ATM mutations were detected with mutation loads of about 20%, each. In the course of the disease these mutations were lost, whereas SF3B1 mut showed a stable mutation load in all three time-points of about 40%. In contrast, mutation load of SAMHD1 increased over time from 4% to 87%. CBA was performed at diagnosis and detected independent clones with del(11q) and del(13q). Accordingly, del(11q) detected by FISH at diagnosis was lost and the percentage of cells with del(13q) increased from diagnosis to time-point C. Therefore, patient #2 shows different genetic subclones in parallel that were eradicated or selected by chemotherapy. In patient #9 two SF3B1 mutations were initially detected with the same mutation load of 10%. After treatment one mutation was lost, whereas the load of the second mutation increased indicating at least two different subclones with only one of them being sensitive to chemotherapy. This might be due to different additional aberrations. Indeed, CBA identified two clones: one with +12 alone and one in combination with del(13q). FISH revealed unchanged percentage of +12 at time-point B, whereas del(13q) positive cells were diminished. Conclusions: In 75% of relapsed CLL cases mutations in SF3B1, TP53, ATM, NOTCH1, and SAMHD1 are present at high frequencies. 80% of these mutations are already detectable before treatment initiation representing the main clone. Remarkably, TP53 mutations were the only mutations that were not detected before but only after chemotherapy. Figure 1. Distribution of gene mutations in 15 CLL cases with mutations at diagnosis or before treatment (D) and at relapse (R). Red = mutated, grey = wild-type, white = not analyzed. Figure 1. Distribution of gene mutations in 15 CLL cases with mutations at diagnosis or before treatment (D) and at relapse (R). Red = mutated, grey = wild-type, white = not analyzed. Disclosures Jeromin: MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schabath:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 605-605 ◽  
Author(s):  
Rajasekhar NVS Suragani ◽  
Pedro A. Martinez ◽  
Sharon M Cawley ◽  
Robert Li ◽  
Robert Scott Pearsall ◽  
...  

Abstract Introduction: Myelofibrosis (MF) is a clonal stem cell disorder that originates from acquired mutations in the hematopoietic stem cells leading to abnormal kinase signaling, cell proliferation, cytokine expression, and splenomegaly and ultimately bone marrow (BM) fibrosis. Primary myelofibrosis (PMF), post-polycythemia vera (PV) MF and post-essential thrombocythemia MF are categorized under MF with overlapping disease phenotypes including progression to BM fibrosis. A genetic mutation in Janus kinase 2 (V617F) was identified as causative in ~95% PV, and ~50% of ET and PMF patients. Currently, treatment of MF patients with a JAK2 inhibitor offers symptomatic benefit, but does not alter the natural history of the disease or improve BM fibrosis. It is known that TGFβ1 is a critical regulator of fibrosis in many disease states. Elevated TGFβ1 levels were reported to be important for fibrosis in patients with MF. We hypothesize that inhibition of TGFβ1 signaling may prevent fibrosis and help reduce secondary morbidities associated with disease in MF patients. Therefore, we evaluated this hypothesis using a TGFβ1 antagonist in a murine model of MF. Methods: Transgenic JAK2 (V617F) mutant mice (MF model) and age-matched wild-type controls were used in the studies. Mice were dosed twice weekly with TGFβ1 antagonist (10 mg/kg). Complete blood counts (CBC), serum TGFβ1, bone metabolism and inflammatory cytokines levels were determined at different ages (2-12 months) during disease progression. Bone marrow and spleen cells were analyzed for different cell lineages by flow cytometry. Tissue sections were stained with H&E and reticulin to determine cellularity or degree of fibrosis respectively. Results: To understand the onset and progression of MF disease in JAK2 (V617F) mice, we initially analyzed the CBC and degree of fibrosis at various ages (2, 3, 4, 5, 8, 10 and 12 months) and compared the data with wild-type mice. These data were then correlated with the levels of TGFβ1 and other cytokines. As expected, red blood cells (RBC) and platelets were elevated in JAK2 mutant mice at all ages compared to wild-type mice, although a trend towards a progressive increase was observed between 2 to 5 months followed by a decrease from 8 to 14 months. Bone marrow fibrosis was detected starting at 5 months and worsened with age. JAK2 mutant mice displayed splenomegaly that increased as the disease progressed. Interestingly, serum levels of TGFβ1, TGFβ3 and bone metabolism cytokines (OPG, OPN, aFGF and Trance) displayed an increase at earlier ages (2-5 months) compared to the latter ages, a trend similar to RBC levels. These levels peaked during the initiation of fibrosis at 5 months. In contrast, inflammatory cytokines (such as IL6, IL-1β, and TNFα) were elevated at later ages consistent with disease progression. We initiated treatment with TGFβ1 antagonist in JAK2 (V617F) mice (N=8/treatment group) at 4 months of age, the age corresponding to elevated serum TGFβ1 levels and prior to the onset of fibrosis (at 5 months of age). Following 6 months of treatment, vehicle (VEH) treated JAK2 mutant mice displayed elevated RBC (+37.1%, P<0.001), platelets (+74.5%, P<0.001) and spleen weights (+9.5 fold, P<0.001) compared to wild-type mice. BM and spleen sections from VEH treated JAK2 mutant mice revealed severe fibrosis. TGFβ1 antagonist treatment of JAK2 mice displayed moderate effect on RBC (-8.4%, N.S) without any effect on platelet counts compared to VEH treatment. Flow-cytometry identified a reduced proportion of Ter119+ erythroid precursors in BM and spleen (-15%, P<0.05) and no change in CD41+ megakaryocytes. TGFβ1 antagonist treated mice displayed reduced spleen weights (-29%, P<0.01), and marked reduction in fibrosis in bone marrow (Figure) and spleen sections compared to VEH. Consistent with the reduction in fibrosis, TGFβ1 antagonist treated JAK2 mice displayed reduced IL-6 levels (-48.9%, P<0.05) compared to VEH treatment. Conclusion: Together, these data demonstrated that TGFβ1 levels were correlated with bone marrow fibrosis in a murine model of MF disease, and its inhibition using TGFβ antagonist reduces fibrosis, splenomegaly and inflammation in this murine model of myelofibrosis. Figure 1. Figure 1. Disclosures Suragani: Acceleron Pharma Inc: Employment, Equity Ownership, Patents & Royalties: No royalties. Martinez:Acceleron Pharma: Employment. Cawley:Acceleron Pharma Inc: Employment. Li:Acceleron Pharma: Employment, Equity Ownership. Pearsall:Acceleron Pharma Inc: Employment, Equity Ownership, Patents & Royalties. Kumar:Acceleron Pharma: Employment, Equity Ownership, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document