scholarly journals IL-2 enhances ex vivo–expanded regulatory T-cell persistence after adoptive transfer

2020 ◽  
Vol 4 (8) ◽  
pp. 1594-1605 ◽  
Author(s):  
Scott N. Furlan ◽  
Karnail Singh ◽  
Christina Lopez ◽  
Victor Tkachev ◽  
Daniel Joel Hunt ◽  
...  

Abstract As regulatory T cell (Treg) adoptive therapy continues to develop clinically, there is a need to determine which immunomodulatory agents pair most compatibly with Tregs to enable persistence and stabilize suppressor function. Prior work has shown that mechanistic target of rapamycin inhibition can increase the stability of thymic Tregs. In this study, we investigated the transcriptomic signatures of ex vivo–expanded Tregs after adoptive transfer in the setting of clinically relevant immunosuppression using a nonhuman primate (NHP) model as a prelude to future transplant studies. Here, we found that adding interleukin-2 (IL-2) to rapamycin in vivo supported a logarithmic increase in the half-life of adoptively transferred carboxyfluorescein diacetate succinimidyl ester–labeled, autologous NHP Tregs, effectively doubling the number of cells in the peripheral blood Treg compartment compared with Treg infusion when rapamycin was given alone. Using single-cell transcriptomics, we found that transferred ex vivo–expanded Tregs initially exhibit a gene expression signature consistent with an activated state. Moreover, those cells with the highest levels of activation also expressed genes associated with p53-mediated apoptosis. In contrast, transferred Tregs interrogated at day +20 posttransfer demonstrated a gene signature more similar to published profiles of resting Tregs. Together, these preclinical data further support combining IL-2 and rapamycin in vivo as adjunctive therapy for ex vivo–expanded adoptively transferred Tregs and suggest that the activation status of ex vivo–expanded Tregs is critical to their persistence.

2019 ◽  
Author(s):  
Scott N Furlan ◽  
Karnail Singh ◽  
Christina Lopez ◽  
Victor Tkachev ◽  
Daniel Hunt ◽  
...  

ABSTRACTAs regulatory T cell (Treg) adoptive therapy continues to develop clinically, there is a need to determine which immunomodulatory agents pair most compatibly with Tregs to enable persistence and stabilize suppressor function. Prior work has shown that mechanistic target of rapamycin (mTOR) inhibition can increase stability of thymic Tregs. In this study we investigated the transcriptomic signatures of ex-vivo expanded Tregs after adoptive transfer in the setting of clinically relevant immunosuppression using a non-human primate (NHP) model as a prelude to future transplant studies. Here, we found that adding interleukin-2 (IL2) to rapamycin in vivo supported a logarithmic increase in the half-life of adoptively transferred CFSE-labeled, autologous NHP Tregs, effectively doubling the number of cells in the peripheral blood Treg compartment compared to Treg infusion with rapamycin alone. Using single cell transcriptomics, we found that transferred ex-vivo expanded Tregs initially exhibit a gene expression signature consistent with an activated state. Moreover, those cells with the highest levels of activation also expressed genes associated with p53-mediated apoptosis. In contrast, transferred Tregs interrogated at Day +20 post-transfer demonstrated a gene signature more similar to published profiles of resting Tregs. Together, these preclinical data further support combining IL2 and rapamycin in vivo as adjunctive therapy for ex-vivo expanded adoptively transferred Tregs and suggest that the activation status of ex-vivo expanded Tregs is critical to their persistence.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2049-2049
Author(s):  
Scott N Furlan ◽  
Christina Lopez ◽  
Victor Tkachev ◽  
Kayla Betz ◽  
Daniel J Hunt ◽  
...  

Abstract As the field of regulatory T cell (Treg) adoptive therapy develops, questions concerning how to best to deploy these cells in patients must be addressed. Prominent among these questions is which adjunctive therapies will pair most synergistically with the transferred cells. Most ideally, a therapy that could prolong persistence and stabilize function of the cells is sought. Prior work has shown that mechanistic target of rapamycin (mTOR) inhibition can afford both stability and a degree of increased persistence to ex-vivo expanded thymic Tregs (tTregs) upon adoptive transfer. In this study, we investigated whether the addition of low-dose interleukin-2 (IL2) to the mTOR inhibitor rapamycin could impart additional persistence to ex-vivoexpanded tTregs after adoptive transfer. Using a non-human primate model of CFSE-labeled autologous tTregs, we found that the addition of IL2 to rapamycin supported a near 10-fold increase in the half-life of adoptively transferred tTregs, effectively doubling the cells in the tTreg compartment for the first month after adoptive transfer. Using a combination of single cell approaches, we were then able to show that transferred tTregs, in the setting of IL2 and rapamycin adjunctive therapy, retain high levels of Treg-specific genes, including FOXP3, after adoptive transfer. Additionally, we found that adoptively transferred tTregs are remarkably homogenous and become more transcriptionally similar to endogenous tTregs with time in vivo. Together these preclinical data support the use of combination IL2 and rapamycin as adjunctive therapy forex-vivo expanded adoptively transferred tTregs. Disclosures Tkachev: Regeneron Pharmaceuticals, Inc.: Research Funding. Blazar:Kadmon Corporation, LLC: Consultancy, Research Funding. Kean:Regeneron Pharmaceuticals, Inc.: Research Funding.


2020 ◽  
Author(s):  
JL Reading ◽  
VD Roobrouck ◽  
CM Hull ◽  
PD Becker ◽  
J Beyens ◽  
...  

AbstractRecent clinical experience has demonstrated that adoptive regulatory T cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote regulatory T cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a GMP compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is linked with a distinct Treg cell-intrinsic transcriptional program, characterized by diminished levels of core exhaustion (BATF, ID2, PRDM1, LAYN, DUSP1), and quiescence (TOB1, TSC22D3) related genes, coupled to elevated expression of cell-cycle and proliferation loci (MKI67, CDK1, AURKA, AURKB). In addition, MulTreg display a unique gut homing (CCR7lo β7hi) phenotype and importantly, are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or Th1-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 TSDR demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno graft vs host disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 957-957
Author(s):  
Christina Lutz-Nicoladoni ◽  
Patrizia Stoizner ◽  
Magdalena Pircher ◽  
Stephanie Wallner ◽  
Anna Maria Wolf ◽  
...  

Abstract Abstract 957 Introduction: Various approaches to induce immunological rejection of tumors including transfer of autologous tumor infiltrating lymhocytes (TIL) after ex vivo clonal expansion or application of ex vivo transduced antigen specific T cell (TCR) transgenic T cells have been elaborated. In general, adoptive T cell transfer (ATC) has been combined with lympho-depleting agents (e.g. cyclophosphamide). However, the therapeutic efficacy of these cancer immunotherapy approaches is limited due to insufficient in vivo activation, expansion and survival of transferred effector immune cells, which is mainly due to suppressive mileu signals and immune evasion mechanisms induced by TGF-β. The E3 ubiquitin ligase Cbl-b is a key regulator of T cell activation and is assumed to confer TGF-β resistance. Thus we performed a proof-of-concept study evaluating Cbl-b targeting as “intracellular adjuvant” strategy to improve ATC for cancer immunotherapy. Material and Methods: We first tested the in vitro sensitivity of CTL towards TGF-β mediated immuno-suppressive cues and then in vivo evaluated the anti-tumor reactivity of cblb-deficient cytotoxic T lymphocytes (CTL) in murine tumor models alone or in combination with a dendritic cell (DC) vaccine. Results: Cblb-deficient CTL are hyper-responsive to TCR/CD28-stimulation in vitro and protected from the negative cues induced by TGF-β as determined by quantification fo IFN-g secretion and quantification of their proliferative capacity. Unexpectedly, adoptive transfer of polyclonal, non TCR-transgenic cblb-deficient CD8+ CTL, however, is not sufficient to reject B16ova or EG7 tumors in vivo, which is in clear contrast to previous reports using lymphopenic animals receiving adoptively transferred TCR-transgenic T cells. Thus, we next evaluated in vivo re-activation of adoptively transferred cblb-deficient T cells by a DC vaccine (i.e. SIINFEKL-pulsed DC). In strict contrast to ATC monotherapy, this approach now markedly delays tumor outgrowth and significantly increase survival rates, which is paralleled by an increased CTL infiltration rate to the tumor site and an enrichment of ova-specific and IFN-g-secreting CTL in the draining lymph nodes. Moreover, compared to wild-type CTL, cblb-deficient mice vaccinated with the DC vaccine show an increased cytolytic activity in vivo. Conclusions: In summary, we provide experimental evidence that genetic inactivation of cblb in polyclonal, non-TCR transgenic adoptively transferred CTL might serve as a novel “adjuvant approach”, suitable to augment the effectiveness of anti-cancer immunotherapies using ATC in immune-competent recipients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 579-579
Author(s):  
Johannes L. Zakrzewski ◽  
David Suh ◽  
Odette M. Smith ◽  
Christopher King ◽  
Gabrielle L. Goldberg ◽  
...  

Abstract T cell deficiencies can occur in many settings, including aging, autoimmune and genetic disorders, hematological malignancies, infectious diseases, and exposure to cytotoxic/cytostatics agents. Notch-based culture systems can be utilized for ex vivo generation of large numbers of T lineage committed lymphoid precursor cells, and we recently reported that the adoptive transfer of T cell precursors significantly enhances T cell reconstitution and function after allogeneic T cell depleted HSCT. The aim of this study was to evaluate if allogeneic T cell precursors are safe and effective when used for adoptive transfer across MHC barriers in the absence of allogeneic HSCs to overcome radiation injury, enhance T cell function and improve anti-tumor activity in immunosuppressed recipients. We found that positive selection of adoptively transferred allogeneic (C57BL/6) precursor cells ± syngeneic (BALB/c) HSCs in irradiated hosts (BALB/c) is dependent on MHC molecules on non-hematopoietic host cells, resulting in the in vivo development of host-MHC restricted allogeneic T cells. We demonstrate that negative selection of these cells is mediated by donor-derived antigen presenting cells (APCs), resulting in host-tolerance. Adoptively transferred allogeneic T cell precursors significantly improved survival of BALB/c mice after irradiation (675 cGy) and enhanced anti-tumor activity against liquid (A20 lymphoma) and solid (renal cell carcinoma) tumors in syngeneic HSCT recipients. Furthermore, we demonstrate the feasibility of genetic engineering of antigen-specific T cell precursors, by transducing them to express a chimeric antigen receptor (CAR) targeting human CD19. Transduction efficiencies were routinely in the range of 50%–70%. Adoptive transfer of CAR-expressing T cell precursors resulted in the in vivo generation of high numbers of appropriately selected CAR-expressing T cells with significantly enhanced anti-tumor activity (compared with CAR-negative T cell precursors) against a CAR-sensitive tumor, but without any undesirable auto/alloreactivity. We conclude that adoptively transferred allogeneic T cell precursors develop into host-MHC restricted and host-tolerant T cells characterized by selection of a functional TCR repertoire even in a fully mismatched thymic epithelial MHC environment. This strategy overcomes important limitations of conventional adoptive T cell therapies: rejection, alloreactivity and impaired antigen recognition due to restriction to MHC disparate from the one expressed on APCs. The use of allogeneic instead of autologous cells eliminates the risk of contamination with residual malignant patient cells and allows the generation and storage of virtually unlimited quantities of precursor cells for ‘off-the-shelf’ immunotherapy. This procedure has not only substantial logistic advantages, but it facilitates ex vivo manipulation, in particular genetic engineering, to generate antigen-specific or otherwise enhanced designer cells. Adoptive transfer of MHC mismatched and genetically enhanced T cell precursors therefore represents a promising novel strategy for targeted ‘off-the-shelf’ immunotherapy in immunosuppressed patients.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3580-3580
Author(s):  
Shoba Amarnath ◽  
James CM Wang ◽  
Paul R. Massey ◽  
James L. Riley ◽  
Bruce Levine ◽  
...  

Abstract Abstract 3580 Poster Board III-517 Immune cell expression of programmed death ligand-1 (PD-L1) represents a particularly important molecular mechanism responsible for control of auto- and allo-immunity mediated by effector memory T cells expressing PD1 receptor. As such, we have reasoned that an immuno-gene therapy approach that enables T cell expression of PD-L1 will represent a novel method of immune regulation. Advantageous features of this proposed therapy include a capacity to: (1) enforce long-term, stable expression of PD-L1; (2) build-in an independent surface marker to allow specific transduced cell enrichment; (3) utilize cellular delivery vehicles comprised of highly functional T cells that persist in vivo after adoptive transfer; and (4) incorporate an enhanced cell fate control or ‘suicide’ gene to permit in vivo control of the immuno-gene therapy. Given these considerations, we developed a recombinant lentiviral vector (LV) incorporating an EF1-α promoter that first encodes the cDNA for a fusion protein consisting of human CD19 (truncated, non-signaling) combined with mutated human TMPK that efficiently activates AZT as a pro-drug (Sato et al; Mol Therapy, 2007); then, after an IRES element, the vector encodes full-length human PD-L1. LV was made after transfection of 293T cells and then concentrated and titered. Initial experiments used Jurkat cells to optimize virus infection and to confirm co-expression of CD19 and PD-L1 by flow cytometry. In previous work, we have demonstrated that ex vivo T cell expansion in rapamycin induces an anti-apoptotic phenotype that permits enhanced in vivo T cell persistence in murine models and human-into-mouse xenogeneic transplant models. As such, we established the goal of infecting primary human CD4+ T cells manufactured using ex vivo co-stimulation (anti-CD3, anti-CD28), Th1-type polarization (inclusion of IFN-α), and exposure to high-dose rapamycin (1 μM); using a 6-day culture system and subsequent anti-CD19 column purification, >90% of resultant transduced T cells expressed PD-L1. Next, we utilized a xenogeneic transplantation model (Rag2−/−γc−/− hosts) to assess in vivo persistence of the gene-modified T cells and transgene expression (10,000 T cells transferred i.v. into each host). In vivo experiment #1 demonstrated that recipients of gene-modified T cells had increased numbers of human T cells in the spleen that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells (harvested at day 5 after adoptive transfer; 38,000 cells/spleen vs. 1000 cells/spleen, p=0.02). Such in vivo harvested T cells were secondarily co-stimulated ex vivo and propagated for an additional 5 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells, 28,600 vs. 1500; p=0.0001). In vivo experiment #2 confirmed and extended these results. At day 21 after adoptive transfer, recipients of gene-modified T cells had increased numbers of human T cells that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells in both the spleen (2800 cells/spleen vs. 390 cells/spleen, p=0.01; n=10 per cohort) and bone marrow (71,600 cells/marrow vs. 6500 cells/marrow, p=0.0001; n=10 per cohort). Such in vivo harvested T cells at day 21 after adoptive transfer were secondarily co-stimulated ex vivo and propagated for an additional 6 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells harvested from spleen, 71,200 vs. 1800, p=0.0008; yield of CD19+PD-L1+ cells harvested from marrow, 226,000 vs. 1400, p=0.0001). Because the rapamycin-resistant T cell vehicle utilized in these experiments manifests an anti-apoptotic phenotype that confers long-term engraftment potential, it is likely that the demonstrated durability in transgene expression relates both to the efficiency of the LV method utilized and to a T cell pro-survival function. In conclusion, the LV-mediated transfer of this novel combination of CD19/TMPK fusion protein and PD-L1 results in stable transgene expression in primary human T cells in vitro and in vivo, thereby opening an avenue to assess PD-L1 mediated immuno-gene therapy under cell fate control. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 288-298 ◽  
Author(s):  
M Cavazzana-Calvo ◽  
JL Stephan ◽  
S Sarnacki ◽  
S Chevret ◽  
C Fromont ◽  
...  

A mouse anti-interleukin-2 receptor A-chain-specific PC61-immunotoxin (PC61-IT) strongly inhibited a primary mixed lymphocyte culture and major histocompatibility complex (MHC)-restricted cytotoxicity. The allodepleted T cells retained their proliferative and cytotoxic capacities in response to third-party stimulation, showing that PC61-IT specifically deleted recipient antigen-specific T-cell clones from the donor mouse. The ability of this specific allodepletion to prevent graft-versus-host disease (GVHD) and graft rejection was investigated in vivo. IT-depleted, activated parental T lymphocytes (C3H/eB) were intravenously injected into lethally irradiated CDF1 mice. GVHD was evaluated after 6 days on the severity of gut lesions. PC61-IT-treated cells significantly reduced both donor T-cell infiltration and acceleration of epithelial renewal (a sensitive index of gut damage) as compared with those for the corresponding untreated controls. The effect of selective allo-depletion on prevention of GVHD and graft rejection was further studied after MHC-haploincompatible bone marrow (BM) transplantation. A significant increase in survival was observed in mice receiving 2 x 10(6) T-cell-depleted BM cells and 0.5 x 10(6) PC61-IT-treated T cells, because one-third were alive without GVHD (and with stable full or partial engraftment) after 100 days, whereas all the mice infused with BM and sham-treated T cells died within 80 days from GVHD, and all the mice infused with BM cells alone rejected grafts. Furthermore, specific tolerance in chimeras towards donor cells could be shown. These results as observed in an experimental in vivo model corroborate previous results obtained in vitro in humans and lead us to consider the use of this selective allodepletion in human BM transplant from donors other than identical familial siblings.


2009 ◽  
Vol 16 (6) ◽  
pp. 953-955 ◽  
Author(s):  
Camila R. Cacere ◽  
Maria J. S. Mendes-Giannini ◽  
Antonio Carlos F. do Valle ◽  
Alberto J. S. Duarte ◽  
Gil Benard

ABSTRACT To better understand the T-cell hyporesponsiveness of patients with paracoccidioidomycosis, we tested the hypothesis that the T cells were committed to apoptosis. We show here that T cells of patients with paracoccidioidomycosis overexpress caspase 9 and caspase 8 but express low Bcl-2 levels and that interleukin-2 was unable to revert the hyporesponsiveness. These data suggest that the T cells would in vivo be driven to a tolerant state and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document