scholarly journals Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models

2020 ◽  
Vol 4 (20) ◽  
pp. 5062-5077
Author(s):  
Emma Morrish ◽  
Anthony Copeland ◽  
Donia M. Moujalled ◽  
Jason A. Powell ◽  
Natasha Silke ◽  
...  

Abstract The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2498-2498
Author(s):  
Jeffrey L. Cleland ◽  
Alvin Wong ◽  
Susan E. Alters ◽  
Peter A. Harris ◽  
Chris R. Dunk ◽  
...  

Abstract An ideal treatment for lymphoma and leukemia is the use of highly selective compounds to eliminate diseased cells with minimal systemic toxicity to normal tissues (cf. imatinib mesylate; Gleevec). AQ4N (1,4 bis[[2-(dimethylamino)ethylamino}-5,8-hydroxyanthracene-9,10-dione bis N-oxide) is designed to have little or no toxicity until selectively activated by bioreduction in hypoxic cells to AQ4 (reduced AQ4N), a highly potent DNA topoisomerase II inhibitor. In a series of studies, AQ4 has been shown to have potent cytotoxicity on lymphoma and leukemia cell lines in vitro and AQ4N has selective activity in lymphatic tissues in vivo. The IC50 of AQ4, was 0.63, 12.0, 90.5 and 150 nM in Namalwa, Daudi, Ramos, and Raji human lymphoma cell lines and 1.0, 6.0, and 20 nM in HL-60, KG1a and K562 human leukemia cell lines. On several of the tumor lines the activity of AQ4 was more potent than doxorubicin (i.e. IC50 for Dox was 20.3 nM on Namalwa). AQ4N also had anti-proliferative activity at μM levels indicating a potential mechanism for activation by these cell lines. In repeat dose toxicology studies of AQ4N in pigmented rats and cynomolgus monkeys, the maximum tolerated doses (MTD; rats: 20 mg/kg/wk x 6; monkeys 6 mg/kg/wk x 6) resulted in lymphoid tissue atrophy. A decrease in lymphocyte levels and atrophy of the spleen, thymus, and mandibular and mesenteric lymph nodes were observed at terminal sacrifice of the animals. In contrast, there was an absence of myelosuppression and only mild neutropenia and minor bone marrow atrophy at the MTD. Administration of radiolabeled AQ4N (14C-benzene) to pigmented rats and cynomolgus monkeys indicated persistence of AQ4N radioactivity in lymphoid tissues for several weeks after a single dose (rats: 20 mg/kg (130–140 μCi/kg); monkeys: 10 mg/kg (135 μCi/kg)). For example, in rats the half-life of radioactive AQ4N in the spleen was 538 hrs with 0.9 μg AQ4N/g tissue (spleen) remaining one week after dosing. Monkeys demonstrated a similar effect with 76.5–86.8 μg AQ4N/g tissue observed in the spleen one week after treatment. Other tissues contained significantly less radioactive AQ4N with the exception of the liver (67.9–78.6 μg AQ4N/g tissue) and adrenal cortex (78.7–86.6 μg AQ4N/g tissue). While some hypertrophy and eosinophila was observed in the adrenal glands, liver toxicity was not observed at the MTD in the repeat dose cynomolgus monkey toxicology study. Overall, these initial findings indicate that AQ4N is active in vitro against human lymphoma and leukemia cell lines and selectively targets lymphoid tissues in vivo suggesting the potential benefit of AQ4N in the treatment of lymphoproliferative diseases.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 186-186
Author(s):  
Carine Robert ◽  
Ivana Gojo ◽  
Feyruz V. Rassool

Abstract Abstract 186 Histone Deacetylase inhibitors (HDi) affect gene expression through induction of histone acetylation and lead also to the acetylation of many other proteins which could affect their cellular activity. We have previously shown that HDi trigger in hematopoietic cells not only widespread histone acetylation and DNA damage responses, but actual DNA Double Strand Breaks (DSBs) which are significantly increased and persist for long periods of time compared with normal cells (Gaymes TJ. and al., Mol Cancer Res. 2006). This raises the hypothesis that HDi regulate the capacity of leukemic cells to repair DSBs, and the explanation for the increased and persistent DNA damage in leukemic cells may be that HDi directly acetylates proteins involved in DSB repair, thus decreasing repair activity. Non Homologous End-Joining (NHEJ) is one of the main pathways for the repair of DSBs in mammalian cells. While normal cells use NHEJ that is Ku and DNA-PKcs dependent, an alternative (Alt) NHEJ pathway (DNA-PKcs and Ku independent) involving Poly-ADP-Ribose Polymerase-1 (PARP-1), Werner syndrome helicase (WRN) and DNA LigaseIIIa proteins, has been identified and is responsible for deletions and translocations in cancer. We have recently reported that myeloid leukemia cells repair DSBs using this Alt NHEJ pathway (Sallmyr A. and al., Blood, 2008). Here we show that HDi treatment by Trichostatin A (300nM) results in differential acetylation of main NHEJ protein Ku70 in acute leukemia K562 cell line. In addition, PARP-1, active in several repair pathways, including single strand break repair and Alt NHEJ is also hyperacetylated in K562 cells after 1 and 6 hours of Trichostatin A treatment compared with control treatment. To investigate whether Trichostatin A treatment alters the binding of DNA repair proteins to DSBs, we used a chromatin immunoprecipitation (CHIP) assay in K562 cell line stably transfected with the DRNeo construct that can be induced to express a single DSB. Strikingly, CHIP analysis shows that PARP-1 is increased at the DSB after 1 hour of Trichostatin A treatment, compared with controls. Preliminary CHIP analysis for the protein XRCC1, necessary for the final step of Alt NHEJ repair, shows that it is decreased at the DSB site. Importantly, AML patients treated with the HDi MS-275 in vivo show significantly increased colocalization of PARP-1 and gH2A.x, a marker for DSBs, compared with pretreatment controls, confirming our in vitro data in leukemia cell lines. Altogether, these data suggest that HDi treatment leads to an increased presence of PARP-1 at DSBs, and that this may prevent subsequent critical repair steps, providing a possible explanation for the persistence of DNA damage. Finally, to determine whether DSB repair activity is indeed decreased with HDi treatment, we used an in vivo NHEJ repair assay in K562 and HL60 acute leukemia cell lines before and after treatment with Trichostatin A for 1 hour. Both leukemia cell lines demonstrate a significant decrease in the capacity of the cells to repair DSBs following Trichostatin A treatment. These results suggest that HDi result in both a physical and functional alteration of proteins participating in DNA repair pathways, leading to a decrease in NHEJ activity. The decrease in Alt NHEJ activity may have implications for genomic instability, diminishing abnormal repair following HDi treatment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 414-421 ◽  
Author(s):  
Li Jia ◽  
Srinivasa M. Srinivasula ◽  
Feng-Ting Liu ◽  
Adrian C. Newland ◽  
Teresa Fernandes-Alnemri ◽  
...  

The human leukemia cell lines K562, CEM, CEM/VLB100, human leukemic blasts, and the bladder cancer J82 cell line have different sensitivities to UV light–induced apoptosis. It is reported that resistance to UV light–induced apoptosis occurs at a point in the apoptotic pathway upstream of caspase-3 but downstream of mitochondrial cytochrome c release. It is demonstrated that the block is due to deficiency of Apaf-1, a critical member of the apoptosome. Sensitivity to apoptosis was independent of caspase-9b or XIAP (inhibitors of apoptosis proteins) expression or levels of procaspase-9. Transfection of Apaf-1 conferred sensitivity to apoptosis in resistant cells. Apaf-1 deficiency may constitute a significant mode of resistance to apoptosis in human leukemia.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 3968-3974 ◽  
Author(s):  
Hiroshi Nishihara ◽  
Masae Maeda ◽  
Atsushi Oda ◽  
Masumi Tsuda ◽  
Hirofumi Sawa ◽  
...  

The CDM (ced-5 of Caenorhabditis elegans,DOCK180 [downstream of Crkwith molecular weight of 180 kDa] of humans, andmyoblast city of Drosophila melanogaster) family of proteins has been shown to play a pivotal role in the integrin-mediated signaling pathway under the regulation of an adaptor moleculec-CT10–related kinase II (c–Crk-II) in adherent cells. Recently, hematopoietic cell–specific CDM protein DOCK2 has been shown to be indispensable for lymphocyte migration. However, the regulatory mechanism for DOCK2 is still unknown because DOCK2 lacks a c–Crk-II binding consensus motif. In this study, we demonstrated that DOCK2 bound to CrkL, which is present exclusively in hematopoietic cells both in vivo and in vitro, and we also found that 2 separate regions of DOCK2 contributed to its binding to Src homology 3 (SH3) domain of CrkL. Colocalization of DOCK2 with Crk-like (CrkL) and F-actin was shown by immunocytochemical analysis with the use of Jurkat cells. We also found that CrkL-induced activation of small guanine triphosphatase (GTPase) Rac1 was significantly inhibited by the DOCK2-dCS mutant in 293T cells. Furthermore, the association of DOCK2 and Vav, the guanine-nucleotide exchanging factor (GEF) for Rac1, was demonstrated in Jurkat cells. Finally, the stable expression of DOCK2-dCS mutant in Jurkat cells was shown to reduce cell attachment. These data suggest the presence of a novel protein complex of CrkL, DOCK2, and Vav to regulate Rac1 in leukemia cell lines.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4650-4650
Author(s):  
Fernanda Marconi Roversi ◽  
Maura Lima Pereira Bueno ◽  
Cristiane Okuda Torello ◽  
Fernanda I Della Via ◽  
Renata Giardini Rosa ◽  
...  

Introduction. Hematopoietic cell kinase (HCK) belongs to the Src kinase family (SFK) involved in the oncogenic process and hematological malignancy. Some SFK inhibitors are currently under investigation in clinical trials for leukemia after demonstrating efficacy in patients with solid tumors. We have previously reported that HCK is overexpressed in leukemic cells and its inhibition by lentivirus resulted in reduction of cell growth and increased cell death (Roversi et al. BBA Mol Basis Dis. 2017, 1863(2):450-61). In light of the genomic and molecular diversity of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), the development of chemical compounds specific for new molecular targets is currently an important subject. Aims. To investigate the in vitro and in vivo effects of a new chemical compound targeting HCK inhibition (iHCK), alone or in combination with the most used drugs for treatment of MDS and AML (Azacytidine - Aza - or Cytarabine - Ara-C). Methods. After iHCK development, we tested its activity alone or in combination with Aza or Ara-C in CD34+ cells isolated from AML patients (n=5) as well as in a panel of myeloid leukemia cell lines (KG1, HL-60, HEL and K562). Additionally, we tested the iHCK in normal and malignant cells cultured in a 3D bioscaffold obtained by decellularization of bovine bone marrow (Bianco et al. Biomat Sci 2019, 7(4):1516-28), in order to mimic the bone marrow niche. After informed written consent and approval of the Ethical Committee of University of Campinas (CAAE 1000.0.146.00-11), in accordance to the Helsinki Declaration, CD34+ cells were isolated from bone marrows of healthy donors (HD), MDS and AML patients and were treated with iHCK or vehicle (DMSO) in liquid culture, for three days. Meanwhile, HS-5 mesenchymal cells were cultured into the 3D bioscaffold. iHCK or vehicle treated CD34+ cells were introduced into the 3D bioscaffold containing HS-5 and evaluated after 7 and 14 days, by light microscopy (hematoxilin and eosin regular staining) and immunohistochemistry (expression of CD34 and CD90 antigens). NOD.CB17-Prkdcscid/J mice received 2 Gy irradiation followed by transplantation with caudal intravenous injection of leukemia cells obtained from hCG-PML-RARα transgenic mice. After acute promyelocytic leukemia (APL) establishment, animals were treated or not with intraperitoneally iHCK and peripheral blood was collected for hematological analysis and protein was extracted from spleen and bone marrows for Western Blot analysis. ANOVA and Student's T-Test were used. Results.In leukemia cell lines and primary cells, the combinatory treatment of iHCK and Cytarabine (1μM) or 5-Azacitidine (1μM) demonstrated synergistic effects, compared to either drug alone, on the reduction of growth and induction of cell death (P<0.001; Figure 1). Further, Western blot revealed increased BAX expression and decreased BCL-XL expression. Moreover, iHCK treatment was able to reduce the activation of oncogenic pathways, MAPK/ERK and PI3K/AKT, leading to severe reduction of ERK, AKT and p70S6 phosphorylation. Treatment with iHCK reduced CD34+ MDS and AML cells proliferation cultured into the 3D bioscaffold but had no effect upon normal CD34+cells. In vivo analysis showed that APL mice treated with iHCK (5μM) for 48h had reduced leukocyte number compared to APL mice treated with vehicle (13.2±1.1 vs 49.4±18.8; P<0.001). No alterations in hemoglobin levels and platelet were found. Likewise, the in vivo iHCK (2.5μM, 5.0μM or 10.0μM) treatment decreased the phosphorylation of ERK, AKT and P70S6K proteins of leukemic cells (Figure 2). Conclusion.The iHCK pharmacological inhibitor has an antiproliferative activity in leukemic cells without altering cell death and survival rate of normal cells, demonstrating on-target malignant cell killing activity as a single agent or in combination with Azacytidine (Aza) or Cytarabine (Ara-C). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3025-3025
Author(s):  
Silke Landmeier ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Jutta Meltzer ◽  
Josef Vormoor ◽  
...  

Abstract Abstract 3025 Poster Board II-1001 Due to its restriction to the B-cell lineage and high surface expression in B-cell malignancies, CD19 is an attractive target antigen for immunological strategies in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). While preclinical in vivo studies of CD19-specific cellular immunotherapy have generally used xenografts from human CD19+ leukemia cell lines, primary leukemia cells are likely to more closely mimic the disease in humans and allow to differentiate between standard and high risk situations. Therefore, we investigated the in vivo sensitivity of human leukemic bone marrow to adoptive immunotherapy with gene-modified CD19-specific T cells. Among 15 primary leukemias obtained from the bone marrow of pediatric patients at diagnosis, 10 were successfully engrafted in NOD/scid mice by intrafemoral injection within 6 to 20 weeks. For therapeutic experiments, we focused on one standard risk leukemia, characterized by a rapid and sustained response to multiagent chemotherapy, and on a leukemia bearing the high-risk feature of an MLL rearrangement, which was refractory to standard treatment. Titration experiments demonstrated reliable engraftment of 1×104 leukemic cells per mouse. For CD19-directed T-cell therapy, cytotoxic T cells (CTLs) with native specificity for Epstein-Barr virus antigens were expanded from 4 healthy donors and transduced to express either a codon-optimized CD19-specific chimeric antigen receptor (CAR) containing the intracellular signaling domain of the TCRz chain (CD19-z), or a control CAR directed against the neuroectodermal antigen GD2 (14.G2a-z). Costimulatory domains now commonly used to ensure sustained T-cell activation via CARs were not included, since previous studies have shown that CAR activity in virus-specific CTLs does not benefit from additional signaling elements. CTLs had a uniform CD8+ effector memory T-cell phenotype (CD45RO+, CCR7-), and CAR surface expression was 73±21%, range 32-93% (CD19-z, n=9) and 18±13%, range 6-35% (14.G2a-z, n=5). In vitro cytotoxicity experiments confirmed specific lysis of the CD19+ leukemia cell lines REH (51Cr release 59.7±7.2% at an effector target ratio of 20:1) and SupB15 (66.7±8.6) as well as primary CD19+ leukemic cells from 5 pediatric patients (47.2±13.2%), in the absence of background lysis by 14.G2a-z-transduced control CTLs. 1×104 leukemic cells per mouse from primary engrafted mice were transferred into further cohorts of NOD/scid mice by secondary intrafemoral transplantation, followed by adoptive transfer of 4 doses of 5×106 CTLs via tail vein injection on days 1, 4, 8, and 11. IL-2 (500 IU/mouse) was administered twice-weekly, and sequential murine bone marrow aspirates were analyzed for human leukemia engraftment by flow cytometry using human CD45 and CD19-specific antibodies starting 3 weeks after transplantation. CD19z CTLs prevented engraftment of the standard risk leukemia in 3 of 4 mice, while 3 of 4 control mice developed the leukemia (p = 0.158, Log Rank/Mantel-Cox Test). Moreover, while the MLL-rearranged human leukemia became detectable in the bone marrow of 4 of 5 control mice, followed by overt and fatal leukemia, 5 of 8 mice receiving transfusions of CD19-z transduced CTLs remained disease-free (p = 0.067), and 6 of 8 remained alive, one of them with detectable leukemia cells (p = 0.054) (see Figure). Thus, adoptive transfer of CD19-redirected CTLs efficiently delayed or prevented engraftment of both standard and high risk ALLs in mice and therefore provides a promising treatment option for patients with BCP-ALL refractory to standard treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3462-3462
Author(s):  
Xi Jiang ◽  
Hao Huang ◽  
Zejuan Li ◽  
Yuanyuan Li ◽  
Ping Chen ◽  
...  

Abstract Abstract 3462 Acute myeloid leukemia (AML) bearing MLL (mixed lineage leukemia) translocations are associated with poor survival, and only fewer than 50% of the patients survive longer than 5 years. Thus, an improved strategy leading to a higher cure rate is urgently needed to treat MLL-associated AML. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been postulated to be important gene expression regulators in all biology including human leukemia. Through large-scale, genome-wide miRNA expression profiling assays, we determined that miR-495 is significantly down-regulated in the majority of human AML samples, particularly, in those with MLL rearrangements. More interestingly, through correlating the expression signature of miR-495 with clinical outcome of AML patients, we revealed that a low expression level of miR-495 is a predictor of poor prognosis in most AML patients. Our further qPCR assays confirmed that the expression of miR-495 is even more significantly downregulated in MLL-rearranged AML primary patient samples and cell lines. Through in vitro colony-forming/replating assays and in vivo bone marrow transplantation studies, we found that forced expression of miR-495 significantly inhibits the capacity of the MLL-AF9 fusion gene to support colony formation in mouse bone marrow progenitor cells in vitro and to induce leukemia in vivo. In leukemia cell lines, overexpression of miR-495 greatly inhibits the viability of the cells, while increasing apoptosis. Furthermore, by using 3 algorithms for miR-495 3'UTR binding sites, we identified several well-known MLL leukemia-related genes, e. g. BMI1, MEF2C, BID and MEIS1, as potential targets of miR-495. Results of qPCR revealed that forced expression of miR-495 significantly inhibits the expression levels of these genes in leukemia cell lines, mouse bone marrow progenitor cells, as well as mouse peripheral blood cells with MLL fusion genes. Therefore we hypothesize that miR-495 may function as a tumor suppressor in AML with MLL rearrangements by targeting essential tumor-related genes. Further studies will focus on: 1) effects of miR-495 on the functions of target genes studied in vitro and in vivo; 2) the epigenetic mechanisms and the signaling pathways involved in regulating the expression level of miR-495 in human leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Sign in / Sign up

Export Citation Format

Share Document