Histone Deacetylase Inhibitors Promote Abnormal Binding of DNA Repair Proteins to DNA Double Strand Breaks: Consequences for DNA Repair and Genomic Instability?.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 186-186
Author(s):  
Carine Robert ◽  
Ivana Gojo ◽  
Feyruz V. Rassool

Abstract Abstract 186 Histone Deacetylase inhibitors (HDi) affect gene expression through induction of histone acetylation and lead also to the acetylation of many other proteins which could affect their cellular activity. We have previously shown that HDi trigger in hematopoietic cells not only widespread histone acetylation and DNA damage responses, but actual DNA Double Strand Breaks (DSBs) which are significantly increased and persist for long periods of time compared with normal cells (Gaymes TJ. and al., Mol Cancer Res. 2006). This raises the hypothesis that HDi regulate the capacity of leukemic cells to repair DSBs, and the explanation for the increased and persistent DNA damage in leukemic cells may be that HDi directly acetylates proteins involved in DSB repair, thus decreasing repair activity. Non Homologous End-Joining (NHEJ) is one of the main pathways for the repair of DSBs in mammalian cells. While normal cells use NHEJ that is Ku and DNA-PKcs dependent, an alternative (Alt) NHEJ pathway (DNA-PKcs and Ku independent) involving Poly-ADP-Ribose Polymerase-1 (PARP-1), Werner syndrome helicase (WRN) and DNA LigaseIIIa proteins, has been identified and is responsible for deletions and translocations in cancer. We have recently reported that myeloid leukemia cells repair DSBs using this Alt NHEJ pathway (Sallmyr A. and al., Blood, 2008). Here we show that HDi treatment by Trichostatin A (300nM) results in differential acetylation of main NHEJ protein Ku70 in acute leukemia K562 cell line. In addition, PARP-1, active in several repair pathways, including single strand break repair and Alt NHEJ is also hyperacetylated in K562 cells after 1 and 6 hours of Trichostatin A treatment compared with control treatment. To investigate whether Trichostatin A treatment alters the binding of DNA repair proteins to DSBs, we used a chromatin immunoprecipitation (CHIP) assay in K562 cell line stably transfected with the DRNeo construct that can be induced to express a single DSB. Strikingly, CHIP analysis shows that PARP-1 is increased at the DSB after 1 hour of Trichostatin A treatment, compared with controls. Preliminary CHIP analysis for the protein XRCC1, necessary for the final step of Alt NHEJ repair, shows that it is decreased at the DSB site. Importantly, AML patients treated with the HDi MS-275 in vivo show significantly increased colocalization of PARP-1 and gH2A.x, a marker for DSBs, compared with pretreatment controls, confirming our in vitro data in leukemia cell lines. Altogether, these data suggest that HDi treatment leads to an increased presence of PARP-1 at DSBs, and that this may prevent subsequent critical repair steps, providing a possible explanation for the persistence of DNA damage. Finally, to determine whether DSB repair activity is indeed decreased with HDi treatment, we used an in vivo NHEJ repair assay in K562 and HL60 acute leukemia cell lines before and after treatment with Trichostatin A for 1 hour. Both leukemia cell lines demonstrate a significant decrease in the capacity of the cells to repair DSBs following Trichostatin A treatment. These results suggest that HDi result in both a physical and functional alteration of proteins participating in DNA repair pathways, leading to a decrease in NHEJ activity. The decrease in Alt NHEJ activity may have implications for genomic instability, diminishing abnormal repair following HDi treatment. Disclosures: No relevant conflicts of interest to declare.

2011 ◽  
Vol 208 (7) ◽  
pp. 1403-1417 ◽  
Author(s):  
Elodie Hatchi ◽  
Genevieve Rodier ◽  
Matthieu Lacroix ◽  
Julie Caramel ◽  
Olivier Kirsh ◽  
...  

The multifunctional E4F1 protein was originally discovered as a target of the E1A viral oncoprotein. Growing evidence indicates that E4F1 is involved in key signaling pathways commonly deregulated during cell transformation. In this study, we investigate the influence of E4F1 on tumorigenesis. Wild-type mice injected with fetal liver cells from mice lacking CDKN2A, the gene encoding Ink4a/Arf, developed histiocytic sarcomas (HSs), a tumor originating from the monocytic/macrophagic lineage. Cre-mediated deletion of E4F1 resulted in the death of HS cells and tumor regression in vivo and extended the lifespan of recipient animals. In murine and human HS cell lines, E4F1 inactivation resulted in mitochondrial defects and increased production of reactive oxygen species (ROS) that triggered massive cell death. Notably, these defects of E4F1 depletion were observed in HS cells but not healthy primary macrophages. Short hairpin RNA–mediated depletion of E4F1 induced mitochondrial defects and ROS-mediated death in several human myeloid leukemia cell lines. E4F1 protein is overexpressed in a large subset of human acute myeloid leukemia samples. Together, these data reveal a role for E4F1 in the survival of myeloid leukemic cells and support the notion that targeting E4F1 activities might have therapeutic interest.


2001 ◽  
Vol 114 (20) ◽  
pp. 3771-3778 ◽  
Author(s):  
Damien D’Amours ◽  
Frédéric R. Sallmann ◽  
Vishva M. Dixit ◽  
Guy G. Poirier

Poly(ADP-ribosyl)ation is an important mechanism for the maintenance of genomic integrity in response to DNA damage. The enzyme responsible for poly(ADP-ribose) synthesis, poly(ADP-ribose) polymerase 1 (PARP-1), has been implicated in two distinct modes of cell death induced by DNA damage, namely apoptosis and necrosis. During the execution phase of apoptosis, PARP-1 is specifically proteolyzed by caspases to produce an N-terminal DNA-binding domain (DBD) and a C-terminal catalytic fragment. The functional consequence of this proteolytic event is not known. However, it has recently been shown that overactivation of full-length PARP-1 can result in energy depletion and necrosis in dying cells. Here, we investigate the molecular basis for the differential involvement of PARP-1 in these two types of cellular demise. We show that the C-terminal apoptotic fragment of PARP-1 loses its DNA-dependent catalytic activity upon cleavage with caspase 3. However, the N-terminal apoptotic fragment, retains a strong DNA-binding activity and totally inhibits the catalytic activity of uncleaved PARP-1. This dominant-negative behavior was confirmed and extended in cellular extracts where DNA repair was completely inhibited by nanomolar concentrations of the N-terminal fragment. Furthermore, overexpression of the apoptotic DBD in mouse fibroblast inhibits endogenous PARP-1 activity very efficiently in vivo, thereby confirming our biochemical observations. Taken together, these experiments indicate that the apoptotic DBD of PARP-1 acts cooperatively with the proteolytic inactivation of the enzyme to trans-inhibit NAD hydrolysis and to maintain the energy levels of the cell. These results are consistent with a model in which cleavage of PARP-1 promotes apoptosis by preventing DNA repair-induced survival and by blocking energy depletion-induced necrosis.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1436 ◽  
Author(s):  
Mandy Beyer ◽  
Annette Romanski ◽  
Al-Hassan M. Mustafa ◽  
Miriam Pons ◽  
Iris Büchler ◽  
...  

Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2127-2127
Author(s):  
Shao-qing Kuang ◽  
Weigang Tong ◽  
Hui Yang ◽  
Mathew K. Lee ◽  
Zhi-Hong Fang ◽  
...  

Abstract Aberrant DNA methylation is a common molecular feature of both pediatric and adult ALL. Specific methylation patterns predict for poor prognosis (Shen et al Blood 2004), and reactivation of epigenetically inactivated molecular pathways results in induction of leukemia cell death (Kuang et al. Oncogene 2007). Until now most studies of methylation in ALL have been based on arbitrary gene selection methods. To overcome this limitation and to study hundreds of promoter CpG islands simultaneously, we have developed a method that combines MCA (Methylated CpG Island Amplification) with either RDA (Representational Difference Analysis) or the Agilent Promoter Microarray platform. With these methods differentially methylated DNA treated with bisulfite is generated after mixing tester DNA (in our case DNA from de novo refractory Ph negative and MLL negative ALL patients) with driver DNA (normal B cell controls) and using specific restriction enzymes and several rounds of PCR. DNA fragments thus generated are either cloned (RDA) or labeled and spotted on the Agilent Array. Using this technology, that can potentially interrogate up to 17K promoters, we have identified 932 promoters targets of aberrant DNA methylation in poor risk ALL from patients that cannot be currently identified by standard molecular methods (Ph and MLL negative). The genes associated with these promoters are distributed through the human genome but an overrepresentation of methylated promoters located in chromosomes 3, 9, 11 and 19 was detected. Using molecular pathway clustering analysis, 404 of these genes are grouped together in 29 specific functional pathways. We have validated the methylation of 31 of these 923 genes by bisulfite pyrosequencing. Of these, 27 (87%) were confirmed to be hypermethylated in 23 human leukemia cell lines but not in normal controls (N=15). Methylation status analysis of these 27 genes allowed for the segregation of T cell versus B cell leukemia cell lines. Fifteen of these genes (GIPC2, RSPO1, MAGI1, CAST1, ADCY5, HSPA4L, OCLN, EFNA5, MSX2, GFPT2, GNA14, SALL1, MYO5B, ZNF382 and MN1) were also frequently hypermethylated in primary ALL samples. Expression analysis of 6 of these genes (GIPC2, MAGI1, ADCY5, HSPA4L, OCLN and GNA14) in leukemia cell lines further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with 5′-aza-2′-deoxycytidine and trichostatin A resulted in gene re-expression, further confirming the role of DNA methylation in their silencing. In summary, we have identified in excess of 900 targets of aberrant DNA methylation in ALL. The study of the epigenetically suppressed pathways represented by these genes should allow us to further understand the molecular pathogenesis of ALL and develop new prognostic biomarkers for patients with Ph and MLL negative disease.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2187-2187
Author(s):  
Xiaomei Yan ◽  
Yoshihiro Hayashi ◽  
Xinghui Zhao ◽  
Aili Chen ◽  
Yue Zhang ◽  
...  

Abstract Transcription factors RUNX1/CBFβ play critical roles in hematopoiesis. Both of them are frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. We have previously shown that MLL, RUNX1, and CBFβ interact and form a regulatory complex to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFβ activity remains unknown. To determine the impact of MLL fusion protein on RUNX1/CBFβ, we introduced either MLL, MLL-BP (longer N-terminal Flag-tagged MLL construct which contains CXXC domain; 1-1406), or MLL-fusions together with RUNX1, CBFβ, or both RUNX1 and CBFβ into 293T cells. MLL-BP and MLL fusions significantly decreased RUNX1 levels compared with controls (empty vector and MLL). CBFβ protein was mildly decreased by MLL-BP and MLL-fusions when expressed alone. However, when CBFβ was co-expressed with RUNX1, it was significantly decreased compared with controls. The expression levels of RUNX1 and CBFβ proteins in LSK cells from Mll-Af9 knock-in mice were significantly lower than those from wild-type (WT) mice. To confirm these findings in human acute myeloid leukemia (AML), we measured the expression of RUNX1 and CBFβ at both mRNA and protein levels in various leukemia cell lines. The expression levels of RUNX1 and CBFβ proteins were significantly decreased in AML cells with MLL fusion and MLL partial tandem duplication (MLL-PTD) compared with those in AML cells without MLL aberrations. MLL fusions still have CXXC domain. In MLL-PTD, the CXXC domain is duplicated. Our data showed that RUNX1 protein is not only down-regulated by MLL fusion proteins, but also by MLL-BP. Thus, to determine which region is involved in the down-regulation of RUNX1, we introduced a series of MLL deletion mutants into 293T cells and measured RUNX1 protein expression. MLL deletion mutants without CXXC domain had no effect on RUNX1 stability. The construct which contains point mutations in CXXC domain also lacked the ability to reduce RUNX1 expression. Furthermore, overexpression of only CXXC domain and flanking regions could down-regulate RUNX1 protein expression. These results suggest that MLL fusion proteins and the N-terminal MLL portion of MLL fusions down-regulate RUNX1 and CBFβ protein expression via the MLL CXXC domain and flanking regions. To understand the impact of RUNX1/CBFβ down-regulation on hematopoietic stem and progenitor cells (HSPCs), we generated RUNX1+/–/CBFβ+/– mice as a hypomorph model. The percentage of bone marrow (BM) LSK cells from RUNX1+/–/CBFβ+/– mice was significantly increased compared with that from WT mice. Using BM cells from these mice, we performed in vitro CFU assay and in vivo bone marrow transplantation (BMT) assay. BM cells from RUNX1+/–/CBFβ+/– mice provided more colonies in CFU assay compared with those from WT mice. To determine whether restoration of RUNX1 could repress the MLL mediated leukemogenesis, we retrovirally overexpressed WT RUNX1 in BM cells from Mll-Af9 knock-in mice. Using transduced BM cells, we performed in vitro CFU assay and in vivo BMT assay. RUNX1 overexpressed Mll-Af9 (Mll-Af9/RUNX1) cells underwent terminal differentiation after 2 times replating, while control vector transduced Mll-Af9 (Mll-Af9/Control) cells could still be replated more than 4 times. All the recipient mice transplanted with Mll-Af9/Control cells developed AML. In contrast, all the recipient mice transplanted with Mll-Af9/RUNX1 never develop AML. Furthermore, when we treated MLL leukemia cell lines with DOT1L inhibitor (EPZ-5676), RUNX1 protein levels in these MLL leukemia cell lines were significantly increased 48 hours after the treatment in comparing with controls treated with DMSO. However, there was no significant mRNA expression level change of RUNX1within 48 hours. Future studies are needed to fully understand the mechanism of whether this increasing RUNX1 protein level by DOT1L inhibitor is through blocking CXXC domain and flanking regions mediated degradation. In conclusion, MLL aberrations down-regulate RUNX1/CBFβ via their CXXC domain and flanking regions. Down-regulation of RUNX1/CBFβ plays critical role for MLL mediated leukemia development. Targeting RUNX1/CBFβ levels allows us to test novel therapies for MLL leukemias. Disclosures Mulloy: Celgene: Research Funding; Seattle Genetics: Research Funding; Amgen: Research Funding; NovImmune: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1568-1568
Author(s):  
Kozo Nagai ◽  
Lihong Hou ◽  
Li Li ◽  
Bao Nguyen ◽  
Courtney M Shirley ◽  
...  

Abstract A number of selective FLT3 tyrosine kinase inhibitors (TKIs) have been tested for treatment of FLT3-ITD+ AML. However, monotherapy with FLT3 TKIs alone has achieved only transient and limited clinical responses due to several resistance mechanisms. Arsenic trioxide (ATO) has demonstrated significant efficacy in treating acute promyelocytic leukemia (APL). ATO has also shown some activity in treating non-APL myeloid leukemias. Recent studies have demonstrated that ATO can affect the degradation of oncogenic mutant proteins including mutant p53 and NPM through the ubiquitin-proteasome pathway (UPP). Here we investigated the feasibility of combining FLT3 TKIs with ATO in the treatment of FLT3-ITD+leukemia. Anti-leukemic effects against FLT3-ITD+ patient AML samples and leukemia cell lines (Molm14, MV4;11) by FLT3 TKIs (Sorafenib, quizartinib), ATO and the combination were examined by MTT, apoptosis, cell viability and colony forming assays. Our data revealed that the combination showed synergistic growth inhibition of the FLT3-ITD+ cell lines Molm14 and MV4;11, with combinatorial index (CI) values at ED50 below 1.0 for both cell lines (CI values were 0.46 and 0.56 for ATO + sorafenib, 0.65 and 0.57 for ATO + quizartinib in Molm14 and MV4;11 cells, respectively). In contrast, there was no synergy observed for the combination in treating leukemia cell lines that do not express mutant FLT3. Synergistic effects for the combination in inducing apoptosis and inhibiting colony formation were also observed for the FLT3-ITD+ cell lines. Furthermore, when the combination was used to treat primary FLT3-ITD+ patient samples, there was also significant reduction of viability and clonogenicity. In contrast, normal BM MNCs showed very limited responses to the combination. Western blot (WB) analysis of Molm14 and FLT3-ITD+ patient samples revealed the combination of ATO and sorefenib potently reduced phosphorylation of FLT3 and its downstream targets (STAT5, MAPK, and AKT). In vivoexperiments using the combination to treat NSG mice engrafted with Molm14 cells demonstrated a significant reduction in the level of leukemic cells. We further investigated the mechanism by which ATO contributes to an anti-leukemic effect on FLT3-ITD+ cells. Morphologic and flow cytometric analysis showed that ATO promoted the differentiation of Molm14 cells. The expression of C/EBPα and PU.1, two key regulators for myeloid differentiation, was increased in ATO-treated Molm14 cells at both the mRNA and protein levels. These data suggest ATO is capable of inducing the differentiation of leukemic cells. We also found that, in FLT3-ITD+ cells, ATO decreased expression of FLT3 protein. This could result from reduced FLT3 production and/or increased protein degradation. Further quantitative PCR analysis revealed ATO decreased expression of FLT3 and its upstream regulators HoxA9 and meis1. Co-immunoprecipitation assay showed that ATO facilitated poly-Ubiquitination and degradation of FLT3 in a dose- and time-dependent fashion. These results indicate that ATO exerts its anti-leukemic effects in FLT3-ITD+AML cell lines and primary samples at least partly through reducing the level of FLT3 protein. These studies together demonstrate that ATO has a unique activity towards FLT3-ITD+ leukemia cells. Based on these findings, ATO is a potential candidate to work in combination with FLT3 TKIs to improve the outcome of FLT3-ITD+ AML patients. Disclosures Levis: Millennium: Consultancy, Research Funding; Daiichi-Sankyo: Consultancy, Honoraria; Astellas: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2498-2498
Author(s):  
Jeffrey L. Cleland ◽  
Alvin Wong ◽  
Susan E. Alters ◽  
Peter A. Harris ◽  
Chris R. Dunk ◽  
...  

Abstract An ideal treatment for lymphoma and leukemia is the use of highly selective compounds to eliminate diseased cells with minimal systemic toxicity to normal tissues (cf. imatinib mesylate; Gleevec). AQ4N (1,4 bis[[2-(dimethylamino)ethylamino}-5,8-hydroxyanthracene-9,10-dione bis N-oxide) is designed to have little or no toxicity until selectively activated by bioreduction in hypoxic cells to AQ4 (reduced AQ4N), a highly potent DNA topoisomerase II inhibitor. In a series of studies, AQ4 has been shown to have potent cytotoxicity on lymphoma and leukemia cell lines in vitro and AQ4N has selective activity in lymphatic tissues in vivo. The IC50 of AQ4, was 0.63, 12.0, 90.5 and 150 nM in Namalwa, Daudi, Ramos, and Raji human lymphoma cell lines and 1.0, 6.0, and 20 nM in HL-60, KG1a and K562 human leukemia cell lines. On several of the tumor lines the activity of AQ4 was more potent than doxorubicin (i.e. IC50 for Dox was 20.3 nM on Namalwa). AQ4N also had anti-proliferative activity at μM levels indicating a potential mechanism for activation by these cell lines. In repeat dose toxicology studies of AQ4N in pigmented rats and cynomolgus monkeys, the maximum tolerated doses (MTD; rats: 20 mg/kg/wk x 6; monkeys 6 mg/kg/wk x 6) resulted in lymphoid tissue atrophy. A decrease in lymphocyte levels and atrophy of the spleen, thymus, and mandibular and mesenteric lymph nodes were observed at terminal sacrifice of the animals. In contrast, there was an absence of myelosuppression and only mild neutropenia and minor bone marrow atrophy at the MTD. Administration of radiolabeled AQ4N (14C-benzene) to pigmented rats and cynomolgus monkeys indicated persistence of AQ4N radioactivity in lymphoid tissues for several weeks after a single dose (rats: 20 mg/kg (130–140 μCi/kg); monkeys: 10 mg/kg (135 μCi/kg)). For example, in rats the half-life of radioactive AQ4N in the spleen was 538 hrs with 0.9 μg AQ4N/g tissue (spleen) remaining one week after dosing. Monkeys demonstrated a similar effect with 76.5–86.8 μg AQ4N/g tissue observed in the spleen one week after treatment. Other tissues contained significantly less radioactive AQ4N with the exception of the liver (67.9–78.6 μg AQ4N/g tissue) and adrenal cortex (78.7–86.6 μg AQ4N/g tissue). While some hypertrophy and eosinophila was observed in the adrenal glands, liver toxicity was not observed at the MTD in the repeat dose cynomolgus monkey toxicology study. Overall, these initial findings indicate that AQ4N is active in vitro against human lymphoma and leukemia cell lines and selectively targets lymphoid tissues in vivo suggesting the potential benefit of AQ4N in the treatment of lymphoproliferative diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4244-4244
Author(s):  
Tsuyoshi Nakamaki ◽  
Norimichi Hattori ◽  
Hidetoshi Nakashima ◽  
Takashi Maeda ◽  
Hirotsugu Ariizumi ◽  
...  

Abstract Pervious in vitro studies have shown that molecular alterations of BCR-ABL-positive leukemia cells such as amplification of BCR-ABL gene and/or mutation(s) of abl kinase domain cause resistant to imatinib. However recent study showed that alterations of imatinib bioavailability might be a important factor to cause clinical resistant in BCR-ABL-positive leukemia patients, showing a differences between in vivo and in vitro sensitivity to imatinib of BCR-ABL-positive cells. To analyze mechanism(s) of clinical resistance to imatinib and to overcome the resistance, we have sequentially established and characterized two leukemia cell lines from a patient with myeloid blastic crisis of chronic myeloid leukemia (CML) who showed progressively resistant to imatinib. Case report and establishment of cell lines: a 59-years-old women developed blastic crisis preceded by four years of chronic phase of CML. Increased blasts in crisis was positive for CD13, 33 and showed double Ph-chromosome in addition to complexed chromosomal alterations such as, add(3)(p13), add(3)(q11), add(5)(q11), der(19)(3;19) (p21;q13). After repeated courses of combination chemotherapy including, 600mg of imatinib was administered orally in combination with chemotherapeutic drugs. For a brief period Imatinib showed clinical effects and slowed the increase of BCR-ABL-positive cells, however myeloblast progressively increased in peripheral blood in spite of daily administration of imatinib and she died four months treatment with imatinib. Two myeloid leukemia cell lines, NS-1 and NS-2 were established, after obtaining informed consent, from peripheral blood at day 65 and day 95 after initiation of imatinib administration, respectively. Cell surface phenotype and karyotype of these cell lines were identical to original blasts. NS-1 and NS-2 cell lines were characterized compared with BCR/ABL-positive K562 erythroleukemia cell line as a control Quantitative analysis by real-time polymerase chain reaction showed that copy number of BCR-ABL transcript were 2.2 × 105 and 1.6 × 10 5/μg RNA in NS-1 and NS-2 respectively, showing slightly lower than those (5.8 × 105) in K562 cell line. Although nucleotide sequence analysis showed that a point mutation in abl kinase domain resulted in amino acid substitution pro310ser in NS-1 cell line, no additional mutation was found in NS-2 cell line. Western blot analysis showed levels of both 210 KD BCR-ABL protein and BCR-ABL phosphorylation were similar in NS-1, NS-2 and K562 cells. Although two hours incubation with 10 mM imatinibin vitro did not show any detectable difference in levels of phosphorylation of BCR-ABL protein between NS-1 and NS-2 cell lines, sensitivity to imatinib measured by MTT assay showed that IC50 was 0.1 mM, 0.5 mM and 1.0mMin NS-1, NS-2 and K562 cell lines respectively. The measured IC50 of both NH-1 and NH-2 cell lines were much lower than reported plasma concentrations achieved by oral administration of 600 mg of imatinib (above 10 μM). The present results suggest difference between in vivo and in vitro sensitivity to imatinib indicate that alteration of bioavailability of imatinib possibly involved in clinical resistance to this drug, accumulations of BCR-ABL gene amplification and/or mutation are not necessarily a major reason of progressive clinical resistance to imatinib in BCR-ABL positive leukemia.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3523-3523
Author(s):  
Danielle Garshott ◽  
Nicole Melong ◽  
Tania T. Sarker ◽  
Yue Xi ◽  
Amy Brownell ◽  
...  

Abstract Background: Acute leukemias are the most common cancers in childhood. Despite multi-agent chemotherapy protocols and the introduction of novel molecularly targeted therapies which have resulted in improved survival over the last few decades, relapsed acute lymphoblastic leukemia remains the second most common pediatric cancer diagnosis. In addition, morbidities from current chemotherapy regimens are unacceptably high. Abundant evidence point to a major role for mediators of the unfolded protein response (UPR) in normal and leukemic white blood cell biology. We have demonstrated that activation of the UPR is a productive approach to inhibit the proliferation of solid tumor cell lines in vitro and to reducing xenograft burden in vivo. The UPR consists of genetically distinct mechanisms that serve to clear misfolded proteins from the endoplasmic reticulum (ER) and enhance protein folding, or induce apoptosis if the initiating stress is prolonged or robust. ML291 is a novel UPR-inducing sulfonamidebenzamide, identified through cell-based high throughput screening and iterative SAR-guided chemical synthesis, that overwhelms the adaptive capacity of the UPR and induces apoptosis in a variety of solid cancer models. Objective: To determine the ability of ML291 to activate the UPR and induce apoptosis in a panel of leukemia cell lines, and to use CHOP-null K562 cells to elucidate the relative contribution of the UPR. We hypothesized that ML291 might activate the PERK/eIF2a/CHOP (apoptotic) arm of the UPR and reduce leukemic cell burden in vitro and in vivo. Methods: MTT and luciferase-based proliferation assays, flow cytometry and RT-qPCR were used to evaluate cell growth, UPR activation and apoptosis in a panel of leukemia cell lines that included AML, ALL and CML in cells exposed to ML291. CRISPR-Cas9 genome editing was used to delete CHOP in K562 (human myeloid leukemia) cells. Deletion was validated by immunoblot analysis and these cells were subjected to the same proliferation and gene analyses described above. The in vivo response to ML291 therapy was evaluated in an established zebrafish xenograft assay (Corkery et al. BJH 2011) in which embryos were xenotransplanted with wild type or CHOP knockdown K562 cells and embryos bathed in ML291. Results: Immunoblot and RT-qPCR analysis revealed an accumulation of proteins and increased gene expression for downstream UPR genes, including CHOP, GRP78/BiP, GADD34 and XBP1 in leukemia cells following ML291 treatment, indicating the activation of the UPR. Increased expression of the apoptotic genes, NOXA, PUMA and DR5 was also observed post-treatment with ML291; and dose response proliferation assays performed after 24 hours revealed IC50 concentrations of 1 - 30µM across cell lines. CHOP deleted K562 cells were protected from cell death when cultured with increasing concentrations of ML291, and were significantly less able to translocate phosphatidylserine across the cell membrane and activate the caspase cascade. When zebrafish embryos xenotransplanted with K562-wild type or -CHOP-null cells were bathed in water containing 5mM ML291 for three days, there was a significant reduction in leukemia cell burden exclusively in theK562 wild type xenografts. Conclusion: Collectively these data indicate that intact PERK/eIF2a/CHOP signaling is required for efficient leukemic cell apoptosis in response to ML291 in vitro and in vivo, and support the hypothesis that small molecule enforcement of the UPR might be a productive therapeutic approach in leukemia. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document