scholarly journals Single-cell DNA sequencing reveals complex mechanisms of resistance to quizartinib

2021 ◽  
Vol 5 (5) ◽  
pp. 1437-1441
Author(s):  
Cheryl A. C. Peretz ◽  
Lisa H. F. McGary ◽  
Tanya Kumar ◽  
Hunter Jackson ◽  
Jose Jacob ◽  
...  

Key Points Single-cell sequencing exposes previously unmeasurable complexity of tumor heterogeneity and clonal evolution on quizartinib. Single-cell sequencing reveals on- and off-target mechanisms of resistance to quizartinib, which can preexist therapy.

Author(s):  
Daniele Ramazzotti ◽  
Fabrizio Angaroni ◽  
Davide Maspero ◽  
Gianluca Ascolani ◽  
Isabella Castiglioni ◽  
...  

ABSTRACTThe rise of longitudinal single-cell sequencing experiments on patient-derived cell cultures, xenografts and organoids is opening new opportunities to track cancer evolution in single tumors and to investigate intra-tumor heterogeneity. This is particularly relevant when assessing the efficacy of therapies over time on the clonal composition of a tumor and in the identification of resistant subclones.We here introduce LACE (Longitudinal Analysis of Cancer Evolution), the first algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. Our approach solves a Boolean matrix factorization problem with phylogenetic constraints, by maximizing a weighted likelihood function computed on multiple time points, and we show with simulations that it outperforms state-of-the-art methods for both bulk and single-cell sequencing data.Remarkably, as the results are robust with respect to high levels of data-specific errors, LACE can be employed to process single-cell mutational profiles as generated by calling variants from the increasingly available scRNA-seq data, thus obviating the need of relying on rarer and more expensive genome sequencing experiments. This also allows to investigate the relation between genomic clonal evolution and phenotype at the single-cell level.To illustrate the capabilities of LACE, we show its application to a longitudinal scRNA-seq dataset of patient-derived xenografts of BRAFV600E/K mutant melanomas, in which we characterize the impact of concurrent BRAF/MEK-inhibition on clonal evolution, also by showing that distinct genetic clones reveal different sensitivity to the therapy. Furthermore, the analysis of a longitudinal dataset of breast cancer PDXs from targeted scDNA-sequencing experiments delivers a high-resolution characterization of intra-tumor heterogeneity, also allowing the detection of a late de novo subclone.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qingke Duan ◽  
Chao Tang ◽  
Zhao Ma ◽  
Chuangui Chen ◽  
Xiaobin Shang ◽  
...  

Gastroesophageal junction (GEJ) cancer is a tumor that occurs at the junction of stomach and esophagus anatomically. GEJ cancer frequently metastasizes to lymph nodes, however the heterogeneity and clonal evolution process are unclear. This study is the first of this kind to use single cell DNA sequencing to determine genomic variations and clonal evolution related to lymph node metastasis. Multiple Annealing and Looping Based Amplification Cycles (MALBAC) and bulk exome sequencing were performed to detect single cell copy number variations (CNVs) and single nucleotide variations (SNVs) respectively. Four GEJ cancer patients were enrolled with two (Pt.3, Pt.4) having metastatic lymph nodes. The most common mutation we found happened in the TTN gene, which was reported to be related with the tumor mutation burden in cancers. Significant intra-patient heterogeneity in SNVs and CNVs were found. We identified the SNV subclonal architecture in each tumor. To study the heterogeneity of CNVs, the single cells were sequenced. The number of subclones in the primary tumor was larger than that in lymph nodes, indicating the heterogeneity of primary site was higher. We observed two patterns of multi-station lymph node metastasis: one was skip metastasis and the other was to follow the lymphatic drainage. Taken together, our single cell genomic analysis has revealed the heterogeneity and clonal evolution in GEJ cancer.


2017 ◽  
Author(s):  
Maurizio Pellegrino ◽  
Adam Sciambi ◽  
Sebastian Treusch ◽  
Robert Durruthy-Durruthy ◽  
Kaustubh Gokhale ◽  
...  

ABSTRACTTo enable the characterization of genetic heterogeneity in tumor cell populations, we developed a novel microfluidic approach that barcodes amplified genomic DNA from thousands of individual cancer cells confined to droplets. The barcodes are then used to reassemble the genetic profiles of cells from next generation sequencing data. Using this approach, we sequenced longitudinally collected AML tumor populations from two patients and genotyped up to 62 disease relevant loci across more than 16,000 individual cells. Targeted single-cell sequencing was able to sensitively identify tumor cells during complete remission and uncovered complex clonal evolution within AML tumors that was not observable with bulk sequencing. We anticipate that this approach will make feasible the routine analysis of heterogeneity in AML leading to improved stratification and therapy selection for the disease.


2021 ◽  
Author(s):  
Thomas Stiehl ◽  
Anna Marciniak-Czochra

AbstractAcute myeloid leukemia is an aggressive cancer of the blood forming system. The malignant cell population is composed of multiple clones that evolve over time. Clonal data reflect the mechanisms governing treatment response and relapse. Single cell sequencing provides most direct insights into the clonal composition of the leukemic cells, however it is still not routinely available in clinical practice. In this work we develop a computational algorithm that allows identifying all clonal hierarchies that are compatible with bulk variant allele frequencies measured in a patient sample. The clonal hierarchies represent descendance relations between the different clones and reveal the order in which mutations have been acquired. The proposed computational approach is tested using single cell sequencing data that allow comparing the outcome of the algorithm with the true structure of the clonal hierarchy. We investigate which problems occur during reconstruction of clonal hierarchies from bulk sequencing data. Our results suggest that in many cases only a small number of possible hierarchies fits the bulk data. This implies that bulk sequencing data can be used to obtain insights in clonal evolution.


2021 ◽  
Author(s):  
Aaron Wing Cheung Kwok ◽  
Chen Qiao ◽  
Rongting Huang ◽  
Mai-Har Sham ◽  
Joshua W. K. Ho ◽  
...  

AbstractMitochondrial mutations are increasingly recognised as informative endogenous genetic markers that can be used to reconstruct cellular clonal structure using single-cell RNA or DNA sequencing data. However, there is a lack of effective computational methods to identify informative mtDNA variants in noisy and sparse single-cell sequencing data. Here we present an open source computational tool MQuad that accurately calls clonally informative mtDNA variants in a population of single cells, and an analysis suite for complete clonality inference, based on single cell RNA or DNA sequencing data. Through a variety of simulated and experimental single cell sequencing data, we showed that MQuad can identify mitochondrial variants with both high sensitivity and specificity, outperforming existing methods by a large extent. Furthermore, we demonstrated its wide applicability in different single cell sequencing protocols, particularly in complementing single-nucleotide and copy-number variations to extract finer clonal resolution. MQuad is a Python package available via https://github.com/single-cell-genetics/MQuad.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhe Dai ◽  
Xu-yu Gu ◽  
Shou-yan Xiang ◽  
Dan-dan Gong ◽  
Chang-feng Man ◽  
...  

Abstract Malignant tumor is a largely harmful disease worldwide. The cure rate of malignant tumors increases with the continuous discovery of anti-tumor drugs and the optimisation of chemotherapy options. However, drug resistance of tumor cells remains a massive obstacle in the treatment of anti-tumor drugs. The heterogeneity of malignant tumors makes studying it further difficult for us. In recent years, using single-cell sequencing technology to study and analyse circulating tumor cells can avoid the interference of tumor heterogeneity and provide a new perspective for us to understand tumor drug resistance.


2016 ◽  
Vol 9 (2) ◽  
pp. 33 ◽  
Author(s):  
Felix Schmidt ◽  
Thomas Efferth

Sign in / Sign up

Export Citation Format

Share Document