scholarly journals Vesicular trafficking is a key determinant of the statin response in acute myeloid leukemia

Author(s):  
Jana Krosl ◽  
Marie-Eve Bordeleau ◽  
Céline Moison ◽  
Tara MacRae ◽  
Isabel Boivin ◽  
...  

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4467-4467
Author(s):  
Simona Pagliuca ◽  
Carmelo Gurnari ◽  
Tariq Kewan ◽  
Waled Bahaj ◽  
Keman Zhang ◽  
...  

Abstract Immunotherapy-based regimens are now integrated in clinical practice for a wide range of cancers. However, responses to immunotherapy are inconsistent across the neoplastic spectrum. To this end, a deep characterization of intra-tumor immune architecture is essential for identifying subsets of patients who can benefit from checkpoint inhibitors and other immunomodulatory treatments. V-domain Ig suppressor of T-cell activation (VISTA) has recently been recognized as a key negative immune regulator of anti-tumor immune response and is gaining growing interest as a potential pharmacological target. This molecule can work either as a receptor or as a ligand, is highly expressed in hematopoietic stem cells and myeloid compartment (Fig.1A) and has been found upmodulated in acute myeloid leukemia (AML). 1 However, despite those features, and its compelling role as a mediator of immune escape in cancer, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we conducted a large multi-omics study, investigating the transcriptomic and genetic signatures associated with VISTA expression in a large publicly available dataset of patients with AML 2 with the purpose of potentially inspiring selective molecular targeted therapies in defined subsets of patients. VISTA was found upregulated in 285 samples from AML patients at diagnosis compared to 33 specimens from healthy controls (HC) (Fig.1B) highlighting its dysregulation at disease onset. When exploring distinct AML subtypes, we observed a pattern reflecting the expression reported in normal myelopoiesis stages, with higher expression levels in myelomonocytic and monocytic subsets and lower levels in promyelocytic leukemia (Fig.1A,B). Accordingly, genomic aberrations associated with higher VISTA expression were more commonly NPM1 mutations and MLLT3-KTM2A gene fusions both enriching M4 and M5 morphologic subgroups respectively (Fig.1C, D). This pattern was also confirmed in a panel of human leukemia cell lines (Fig.1E). Based on the 75%ile of VISTA mRNA expression in HC, we categorized patients in high (N=139) and low (N=146) expressors and performed a differential analysis between the two groups. High VISTA expressors showed a striking enrichment in genes involved in immune activation with upregulation of antigen presentation and processing pathways, cytokine and interleukine signaling, toll-like receptor cascade, NK cytotoxicity and response to interferon (Fig.1F,G). Based on these findings, we reasoned that VISTA hyperexpression could arise from two possible mechanisms: I) a paraphenomenon of the enrichment in blasts with particular morphologic features, II) a feedback response to the initial immune activation against leukemic blasts, in patients with higher immunoediting potential, representing an early marker of immune pressure, shaping leukemia ontogeny. To further test this last hypothesis, we analyzed the correlation between VISTA expression and the mutational burden present in those AML specimens and found that high VISTA expression inversely correlated with the number of somatic hits acquired at diagnosis (Fig.1H). Consistent with lessons inherited from tumor biology, this result potentially indicates that VISTA hyperexpression counteracts immunoediting mechanisms that, in an initial phase, sculpt the oncogenic potential of leukemic blasts, selecting clones with lower neoantigenic burden. This phase of immune activation and elimination, is ideally followed by an equilibrium and escape stage, in which regulatory negative mechanisms arise, ultimately facilitating leukemic progression. Of note is that unbiased differential analysis of the same AML subset compared to HC did not identify upregulation in any other antigen presenting cell-associated checkpoint negative regulators, including PDL1. Altogether those findings pinpoint the role of VISTA as early marker of immune activation and potentially a feedback mechanism that ultimately may promote immune escape in AML. Targeting VISTA may be an effective approach for controlling disease recurrence and treatment resistance in molecularly defined subgroups of AML. Ongoing experiments and analysis of immunogenomic players of immune escape in the setting of allogenic stem cell transplantation will clarify the role of VISTA in mediating AML relapse and evasion from graft versus leukemia effect. Figure 1 Figure 1. Disclosures Maciejewski: Regeneron: Consultancy; Novartis: Consultancy; Bristol Myers Squibb/Celgene: Consultancy; Alexion: Consultancy.


2019 ◽  
Vol XIV (1) ◽  
Author(s):  
A.M. Radzhabova ◽  
S.V. Voloshin ◽  
I.S. Martynkevich ◽  
A.A. Kuzyaeva ◽  
V.A. Shuvaev ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiyi Yao ◽  
Fenglin Li ◽  
Jiansong Huang ◽  
Jie Jin ◽  
Huafeng Wang

AbstractDespite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Li ◽  
Zheng Ge

Abstract Background Acute myeloid leukemia (AML) remains one of the most common hematological malignancies, posing a serious challenge to human health. HSPA8 is a chaperone protein that facilitates proper protein folding. It contributes to various activities of cell function and also is associated with various types of cancers. To date, the role of HSPA8 in AML is still undetermined. Methods In this study, public datasets available from the TCGA (Cancer Genome Atlas) and GEO (Gene Expression Omnibus) were mined to discover the association between the expression of HSPA8 and clinical phenotypes of CN-AML. A series of bioinformatics analysis methods, including functional annotation and miRNA-mRNA regulation network analysis, were employed to investigate the role of HSPA8 in CN-AML. Results HSPA8 was highly expressed in the AML patients compared to the healthy controls. The high HSPA8 expression had lower overall survival (OS) rate than those with low HSPA8 expression. High expression of HSPA8 was also an independent prognostic factor for overall survival (OS) of CN-AML patients by multivariate analysis. The differential expressed genes (DEGs) associated with HSPA8 high expression were identified, and they were enriched PI3k-Akt signaling, cAMP signaling, calcium signaling pathway. HSPA8 high expression was also positively associated with micro-RNAs (hsa-mir-1269a, hsa-mir-508-3p, hsa-mir-203a), the micro-RNAs targeted genes (VSTM4, RHOB, HOBX7) and key known oncogenes (KLF5, RAN, and IDH1), and negatively associated with tumor suppressors (KLF12, PRKG1, TRPS1, NOTCH1, RORA). Conclusions Our research revealed HSPA8 as a novel potential prognostic factor to predict the survival of CN-AML patients. Our data also revealed the possible carcinogenic mechanism and the complicated microRNA-mRNA network associated with the HSPA8 high expression in AML.


2016 ◽  
Vol 44 (9) ◽  
pp. S65 ◽  
Author(s):  
David Corrigan ◽  
Larry Luchsinger ◽  
Hans Snoeck

2011 ◽  
Vol 2 (5) ◽  
pp. 585-592 ◽  
Author(s):  
B. Salvatori ◽  
I. Iosue ◽  
N. Djodji Damas ◽  
A. Mangiavacchi ◽  
S. Chiaretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document