scholarly journals Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled

2017 ◽  
Vol 26 (146) ◽  
pp. 170093 ◽  
Author(s):  
Anna R. Hemnes ◽  
Marc Humbert

The pathobiology of pulmonary arterial hypertension (PAH) is complex and incompletely understood. Although three pathogenic pathways have been relatively well characterised, it is widely accepted that dysfunction in a multitude of other cellular processes is likely to play a critical role in driving the development of PAH. Currently available therapies, which all target one of the three well-characterised pathways, provide significant benefits for patients; however, PAH remains a progressive and ultimately fatal disease. The development of drugs to target alternative pathogenic pathways is, therefore, an attractive proposition and one that may complement existing treatment regimens to improve outcomes for patients. Considerable research has been undertaken to identify the role of the less well-understood pathways and in this review we will highlight some of the key discoveries and the potential for utility as therapeutic targets.

2019 ◽  
Vol 133 (24) ◽  
pp. 2481-2498 ◽  
Author(s):  
Hannah E. Morris ◽  
Karla B. Neves ◽  
Augusto C. Montezano ◽  
Margaret R. MacLean ◽  
Rhian M. Touyz

Abstract Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Malik Bisserier ◽  
Prabhu Mathiyalagan ◽  
Yassine Abdeldjebbar ◽  
Shihong Zhang ◽  
Firas Elmastour ◽  
...  

Background: Pulmonary arterial hypertension (PAH) is a fatal lung disease of multifactorial etiology, with no curative treatment. Several studies have previously suggested that hypermethylation of the BMPR2 promoter may be associated with gene repression and disease progression. However, the underlying mechanisms have yet to be discovered. Sin3A/B (Switch-Independent 3) plays a critical role in the transcriptional regulation of genes through various epigenetic mechanisms. Here, we investigated for the first time the role of SIN3a in the regulation of BMPR2 methylation and expression in PAH. Methods: Expression of SIN3a was analyzed by qRT-PCR and western blot in lung tissues from PAH patients and rodent models of PAH. Using a gain- and loss-of-function approach, we investigated the role of SIN3a on cell proliferation (BrdU assay) and migration (Boyden chamber assay), and BMPR2 levels in primary human pulmonary arterial smooth muscle cells (hPASMC) and endothelial cells (hPAEC). The methylation level was analyzed by MS-PCR. The therapeutic potential of SIN3a was tested in vivo in the Sugen/Hypoxia (SuHx) mouse and monocrotaline (MCT) rat models of PAH using an adeno-associated virus 1 encoding human SIN3a. Results: We found a significant downregulation of SIN3a expression in the lung samples from PAH patients, SuHx mice, and MCT rats. In hPASMC and hPAEC, our results showed that SIN3a inhibits cell proliferation, migration, and upregulates BMPR2 through two distinct pathways. In hPASMC, our data showed that SIN3a upregulates BMPR2 expression by inhibiting the methylation level of the BMPR2 promoter. In hPAEC, SIN3a restored BMPR2 expression independently of the methylation status by upregulating the FOXK2 transcription factor. In vivo , our results showed that restoring SIN3a expression by gene therapy significantly decreased MCT- and SuHx-induced PAH as illustrated by decreased vascular and RV remodeling, hypertrophy, PAP and RVSP. Conclusions: Altogether, our study revealed that SIN3a plays a critical role in the regulation of BMPR2 expression by modulating the lung epigenetic landscape. Additionally, our study identifies lung-targeted SIN3a gene therapy as a new promising therapeutic strategy for treating PAH patients.


2016 ◽  
Vol 15 (1) ◽  
pp. 12-13
Author(s):  
Adaani E. Frost ◽  
Harrison W. Farber

Dramatic advances in therapy for pulmonary arterial hypertension (PAH) in the last 20 years have improved survival from a median of 2.5 years in the pretreatment era to 7.5 years currently. However, impressive as that may seem, it is important to note that a median survival of 7.5 years is equivalent to that of surgically resected non-small cell lung cancer, thus underscoring the importance of lung transplantation as a treatment option in patients with PAH. In this edition of Advances, Edelman has reviewed the pathway to transplantation for patients with PAH, detailing the recommendations for timing of referral, listing for lung transplantation, the role of the lung allocation score in allocating a donor organ, and the outcome of lung transplantation.


Author(s):  
Mustafa Yildiz ◽  
Alparslan Sahin ◽  
Michael Behnes ◽  
İbrahim Akin

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyle A. Batton ◽  
Christopher O. Austin ◽  
Katelyn A. Bruno ◽  
Charles D. Burger ◽  
Brian P. Shapiro ◽  
...  

Author(s):  
Marcelle Paula-Ribeiro ◽  
Indyanara C. Ribeiro ◽  
Liliane C. Aranda ◽  
Talita M. Silva ◽  
Camila M. Costa ◽  
...  

The baroreflex integrity in early-stage pulmonary arterial hypertension (PAH) remains uninvestigated. A potential baroreflex impairment could be functionally relevant and possibly mediated by enhanced peripheral chemoreflex activity. Thus, we investigated 1) the cardiac baroreflex in non-hypoxemic PAH; 2) the association between baroreflex indexes and peak aerobic capacity (i.e., V̇O2peak); and 3) the peripheral chemoreflex contribution to the cardiac baroreflex. Nineteen patients and 13 age- and sex-matched healthy adults (HA) randomly inhaled either 100% O2 (peripheral chemoreceptors inhibition) or 21% O2 (control session), while at rest and during a repeated sit-to-stand maneuver. Beat-by-beat analysis of R-R intervals and systolic blood pressure provided indexes of cardiac baroreflex sensitivity (cBRS) and effectiveness (cBEI). The PAH group had lower cBEIALL at rest (mean ± SD: PAH = 0.5 ± 0.2 vs HA = 0.7 ± 0.1 a.u., P = 0.02) and lower cBRSALL (PAH = 6.8 ± 7.0 vs HA = 9.7 ± 5.0 ms mmHg-1, P < 0.01) and cBEIALL (PAH = 0.4 ± 0.2 vs HA= 0.6 ± 0.1 a.u., P < 0.01) during the sit-to-stand maneuver versus the HA group. The cBEI during the sit-to-stand maneuver was independently correlated to V̇O2peak (partial r = 0.45, P < 0.01). Hyperoxia increased cBRS and cBEI similarly in both groups at rest and during the sit-to-stand maneuver. Therefore, cardiac baroreflex dysfunction was observed under spontaneous and, most notably, provoked blood pressure fluctuations in non-hypoxemic PAH, was not influenced by the peripheral chemoreflex, and was associated with lower V̇O2peak suggesting it could be functionally relevant.


Sign in / Sign up

Export Citation Format

Share Document