scholarly journals Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

2008 ◽  
Vol 9 (1) ◽  
pp. 315 ◽  
Author(s):  
Li Ma ◽  
H Birali Runesha ◽  
Daniel Dvorkin ◽  
John R Garbe ◽  
Yang Da
Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 714 ◽  
Author(s):  
Muhammad Ikram ◽  
Xu Han ◽  
Jian-Fang Zuo ◽  
Jian Song ◽  
Chun-Yu Han ◽  
...  

100-seed weight (100-SW) in soybeans is a yield component trait and controlled by multiple genes with different effects, but limited information is available for its quantitative trait nucleotides (QTNs) and candidate genes. To better understand the genetic architecture underlying the trait and improve the precision of marker-assisted selection, a total of 43,834 single nucleotide polymorphisms (SNPs) in 250 soybean accessions were used to identify significant QTNs for 100-SW in four environments and their BLUP values using six multi-locus and one single-locus genome-wide association study methods. As a result, a total of 218 significant QTNs were detected using multi-locus methods, whereas eight QTNs were identified by a single-locus method. Among 43 QTNs or QTN clusters identified repeatedly across various environments and/or approaches, all of them exhibited significant trait differences between their corresponding alleles, 33 were found in the genomic region of previously reported QTLs, 10 were identified as new QTNs, and three (qHSW-4-1, qcHSW-7-3, and qcHSW-10-4) were detected in all the four environments. The number of seed weight (SW) increasing alleles for each accession ranged from 8 (18.6%) to 36 (83.72%), and three accessions (Yixingwuhuangdou, Nannong 95C-5, and Yafanzaodou) had more than 35 SW increasing alleles. Among 36 homologous seed-weight genes in Arabidopsis underlying the above 43 stable QTNs, more importantly, Glyma05g34120, GmCRY1, and GmCPK11 had known seed-size/weight-related genes in soybean, and Glyma07g07850, Glyma10g03440, and Glyma10g36070 were candidate genes identified in this study. These results provide useful information for genetic foundation, marker-assisted selection, genomic prediction, and functional genomics of 100-SW.


2011 ◽  
Vol 35 (8) ◽  
pp. 867-879 ◽  
Author(s):  
Gundula Behrens ◽  
Thomas W. Winkler ◽  
Mathias Gorski ◽  
Michael F. Leitzmann ◽  
Iris M. Heid

2017 ◽  
Vol 60 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Markus Schmid ◽  
Jörn Bennewitz

Abstract. Quantitative or complex traits are controlled by many genes and environmental factors. Most traits in livestock breeding are quantitative traits. Mapping genes and causative mutations generating the genetic variance of these traits is still a very active area of research in livestock genetics. Since genome-wide and dense SNP panels are available for most livestock species, genome-wide association studies (GWASs) have become the method of choice in mapping experiments. Different statistical models are used for GWASs. We will review the frequently used single-marker models and additionally describe Bayesian multi-marker models. The importance of nonadditive genetic and genotype-by-environment effects along with GWAS methods to detect them will be briefly discussed. Different mapping populations are used and will also be reviewed. Whenever possible, our own real-data examples are included to illustrate the reviewed methods and designs. Future research directions including post-GWAS strategies are outlined.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Baolin Wu ◽  
James S. Pankow

Multiple correlated traits are often collected in genetic studies. By jointly analyzing multiple traits, we can increase power by aggregating multiple weak effects and reveal additional insights into the genetic architecture of complex human diseases. In this article, we propose a multivariate linear regression-based method to test the joint association of multiple quantitative traits. It is flexible to accommodate any covariates, has very accurate control of type I errors, and offers very competitive performance. We also discuss fast and accurate significance p value computation especially for genome-wide association studies with small-to-medium sample sizes. We demonstrate through extensive numerical studies that the proposed method has competitive performance. Its usefulness is further illustrated with application to genome-wide association analysis of diabetes-related traits in the Atherosclerosis Risk in Communities (ARIC) study. We found some very interesting associations with diabetes traits which have not been reported before. We implemented the proposed methods in a publicly available R package.


Sign in / Sign up

Export Citation Format

Share Document