scholarly journals Involvement of cyclin B1 in progesterone-mediated cell growth inhibition, G2/M cell cycle arrest, and apoptosis in human endometrial cell

2009 ◽  
Vol 7 (1) ◽  
pp. 144 ◽  
Author(s):  
Li Tang ◽  
Yu Zhang ◽  
Hong Pan ◽  
Qiong Luo ◽  
Xiao-Ming Zhu ◽  
...  
2013 ◽  
Vol 700 (1-3) ◽  
pp. 13-22 ◽  
Author(s):  
Hui-Yu Xu ◽  
Zhi-Wei Chen ◽  
He Li ◽  
Li Zhou ◽  
Feng Liu ◽  
...  

2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


Oncogene ◽  
2001 ◽  
Vol 20 (23) ◽  
pp. 2927-2936 ◽  
Author(s):  
Sreenivasa R Chinni ◽  
Yiwei Li ◽  
Sunil Upadhyay ◽  
Prathima K Koppolu ◽  
Fazlul H Sarkar

2013 ◽  
Vol 51 (7-8) ◽  
pp. 603-617 ◽  
Author(s):  
Aiqin Song ◽  
Junli Ye ◽  
Kunpeng Zhang ◽  
Lirong Sun ◽  
Yanxia Zhao ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 993
Author(s):  
Xi Chen ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
Thomas Herald ◽  
Dmitriy Smolensky ◽  
...  

Phenolic compounds in some specialty sorghums have been associated with cancer prevention. However, direct evidence and the underlying mechanisms for this are mostly unknown. In this study, phenolics were extracted from 13 selected sorghum accessions with black pericarp while F10000 hybrid with white pericarp was used as a control, and cell growth inhibition was studied in hepatocarcinoma HepG2 and colorectal adenocarcinoma Caco-2 cells. Total phenolic contents of the 13 high phenolic grains, as determined by Folin–Ciocalteu, were 30–64 mg GAE/g DW in the phenolic extracts of various accessions compared with the control F10000 at 2 mg GAE/g DW. Treatment of HepG2 with the extracted phenolics at 0–200 μM GAE up to 72 h resulted in a dose- and time-dependent reduction in cell numbers. The values of IC50 varied from 85 to 221 mg DW/mL while the control of F10000 was 1275 mg DW/mL. The underlying mechanisms were further examined using the highest phenolic content of PI329694 and the lowest IC50 of PI570481, resulting in a non-cytotoxic decrease in cell number that was significantly correlated with increased cell cycle arrest at G2/M and apoptotic cells in both HepG2 and Caco-2 cells. Taken together, these results indicated, for the first time, that inhibition of either HepG2 or Caco-2 cell growth by phenolic extracts from 13 selected sorghum accessions was due to cytostatic and apoptotic but not cytotoxic mechanisms, suggesting some specialty sorghums are a valuable, functional food, providing sustainable phenolics for potential cancer prevention.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Li-Chi Huang ◽  
Ka-Wai Tam ◽  
Wei-Ni Liu ◽  
Chun-Yu Lin ◽  
Kai-Wen Hsu ◽  
...  

Anaplastic carcinoma of the thyroid (ATC), also called undifferentiated thyroid cancer, is the least common but most aggressive and deadly thyroid gland malignancy of all thyroid cancers. The aim of this study is to explore essential biomarker and use CRISPR/Cas9 with lentivirus delivery to establish a gene-target therapeutic platform in ATC cells. At the beginning, the gene expression datasets from 1036 cancers from CCLE and 8215 tumors from TCGA were collected and analyzed, showing EGFR is predominantly overexpressed in thyroid cancers than other type of cancers (P=0.017 in CCLE and P=0.001 in TCGA). Using CRISPR/Cas9 genomic edit system, ATC cells with EGFR sgRNA lentivirus transfection obtained great disruptions on gene and protein expression, resulting in cell cycle arrest, cell growth inhibition, and most importantly metastasis turn-off ability. In addition, the FDA-approved TKI of afatinib for EGFR targeting also illustrates great anticancer activity on cancer cell death occurrence, cell growth inhibition, and cell cycle arrest in SW579 cells, an EGFR expressing human ATC cell line. Furthermore, off-target effect of using EGFR sgRNAs was measured and found no genomic editing can be detected in off-target candidate gene. To conclude, this study provides potential ATC therapeutic strategies for current and future clinical needs, which may be possible in increasing the survival rate of ATC patients by translational medicine.


Sign in / Sign up

Export Citation Format

Share Document