scholarly journals Characterization of the decline and recovery of heat-treated Scenedesmus vacuolatus

2013 ◽  
Vol 54 (1) ◽  
Author(s):  
Tzan-Chain LEE ◽  
Ban-Dar HSU
Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Author(s):  
Shozo Ikeda ◽  
Hirotoshi Hayakawa ◽  
Daniel R. Dietderich

Pb addition makes easier to form the high Tc phase in the BSCCO system. However, Pb easily vaporized at high temperature. A controlled Pb potential method has been applied to grow the high Tc phase in films. Initially, films are deposited on cleaved MgO substrates using an rf magnetron sputtering system. These amorphous as-deposited films are heat treated in a sealed gold capsule along with a large pellet of Pb-added BSCCO. Details of the process and characterization of the films have been reported elsewhere (1). Films trated for 0.5h at 850° C contain mainly the low Tc phase with a small amount of the high Tc phase. Hawever, films treated for 3h at 850°C consist mainly of the high Tc phase. This film is superconductive with a Tc(zero) of 106K. The Pb/Bi ratio of the films, analysed by SEM- EDS, are 0.12 and 0.18 for heat tratment times of 0.5 and 3h, respectively. The present study investigates the modulated structures of these films using HREM.


Author(s):  
A. Brown ◽  
K. Krishnan ◽  
L. Wayne ◽  
P. Peralta ◽  
S. N. Luo ◽  
...  

Global and local microstructural weak links for spall damage were investigated using 3-D characterization in polycrystalline (PC) and multicrystalline (MC) copper samples, respectively. All samples were shocked via flyer-target plate experiments using a laser drive at low pressures (2–6 GPa). The flyer plates measured approximately 500 μm thick and 8 mm in diameter and the target plates measured approximately 1000 μm thick and 10 mm in diameter. Electron Backscattering Diffraction (EBSD) and optical microscopy were used to determine to presence of voids and relate them to the surrounding microstructure. Statistics on the strength of grain boundaries (GBs) was conducted by analyzing PC samples and collecting the misorientation across GBs with damage present, and it was found that a misorientation range of 25–50° is favorable for damage. Statistics were also taken of copper PC samples that had undergone different heat treatments and it was found that although the 25–50° range is less dominant, it is still favorable for damage nucleation. Removal of initial plastic strain via heat treatments and an increase in Σ3 CSL boundaries, indicative of strong annealing twins, also led to an increased amount of transgranular damage. 3-D X-ray tomography data were used to investigate the shape of the voids present in untreated, as received and heat treated samples. It was found that the as received sample contained a higher amount of “disk”, or, “sheet-like” voids indicative of intergranular damage, whereas the heat treated samples had a higher fraction of spherical shaped voids, indicative of transgranular damage. MC samples were used to study microstructural weak links for spall damage because the overall grain size is much larger than the average void size, making it possible to determine which GBs nucleated damage. Simulations and experimental analysis of damage sites with large volumes indicate that high Taylor factor mismatches with respect to the crystallographic grain GB normal is the primary cause for the nucleation of damage at a GB interface and a low Taylor factor along the shock direction in either grain drives void growth perpendicular to the GB. Cases where experimental results show damage and simulation results show no damage are attributed to the presence of an intrinsic microstructural weak link, such as an incoherent twin boundary.


2021 ◽  
Vol 212 ◽  
pp. 106222
Author(s):  
Balázs Zsirka ◽  
Veronika Vágvölgyi ◽  
Katalin Győrfi ◽  
Erzsébet Horváth ◽  
Róbert K. Szilágyi ◽  
...  

2012 ◽  
Vol 212 (6) ◽  
pp. 1324-1330 ◽  
Author(s):  
Pornnapa Kasemsiri ◽  
Salim Hiziroglu ◽  
Sarawut Rimdusit

2006 ◽  
Vol 317-318 ◽  
pp. 807-810 ◽  
Author(s):  
Chang Yeoul Kim ◽  
Jin Wook Choi ◽  
Tae Yeoung Lim ◽  
Duck Kyun Choi

Electrochromic WO3 thin film was prepared by using tungsten metal solution in hydrogen peroxide as a starting solution and by sol-gel dip coating method. XRD pattern showed that tungsten oxide crystal phase formed at 400. In the view of electrochemical property, WO3 thin film which was heat-treated at 300 and was amorphous had better than that of the crystalline phase.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2013 ◽  
Vol 2 (1) ◽  
pp. 20120033
Author(s):  
R. N. Singh ◽  
A. K. Bind ◽  
J. B. Singh ◽  
J. K. Chakravartty ◽  
V. Thomas Paul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document