scholarly journals Subduction of a rifted passive continental margin: the Pohorje case of Eastern Alps–constraints from geochronology and geochemistry

2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Ruihong Chang ◽  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Wei Jin ◽  
...  

Abstract This study presents geochronological and geochemical data from newly dated Permian granitic orthogneisses associated with the Eclogite-Gneiss unit (EGU) from the southernmost part of the Austroalpine nappe stack, exposed within the Pohorje Mountains (Slovenia). LA-ICP-MS zircon U–Pb ages of two samples of the augen-gneisses are 255 ± 2.2 Ma and 260 ± 0.81 Ma, which are interpreted as the age of magmatic crystallization of zircon. In contrast, all round zircons from leucogneisses give Cretaceous ages (89.3 ± 0.7 Ma and 90.8 ± 1.2 Ma), considered as the age of UHP/HP metamorphism. The round zircons overgrew older euhedral zircons of Permian and rare older ages tentatively indicating that these rocks are of latest Permian age, too. Zircon εHf(t) values of the four orthogneiss samples are between − 13.7 and − 1.7 with an initial 176Hf/177Hf ratio ranging from 0.282201 to 0.282562; T DM C is Proterozoic. The augen-gneisses show geochemical features, e.g. high (La/Lu)N ratios and strong negative Eu anomalies, of an evolved granitic magma derived from continental crust. The leucogneisses are more heterogeneously composed and are granitic to granodioritic in composition and associated with eclogites and ultramafic cumulates of oceanic affinity. We argue that the Permian granitic orthogneisses might be derived from partial melting of lower crust in a rift zone. We consider, therefore, that segment of the EGU is part of the distal Late Permian rift zone, which finally led to the opening of the Meliata Ocean during Middle Triassic times. If true, the new data also imply that the Permian stretched continental crust was potentially not much wider than ca. 100 km, was subducted and then rapidly exhumed during early Late Cretaceous times.

2020 ◽  
Author(s):  
Ruihong Chang ◽  
Franz Neubauer ◽  
Johann Genser ◽  
Yongjiang Liu ◽  
Sihua Yuan

<p>A-type subduction is considered to occur at the final stage of continent-continent collision. In many cases, the UHP/HP metamorphic conditions are well known but data on the type of subducted continental crust is lacking. In terms of end members, the type of subducted crust is either (1) normal thick continental crust or (2) the crust from the center of a rift zone, which is influenced by strong extension, high-temperature metamorphism due to thinning of even the continental mantle lithosphere and strong magmatism. To resolve these alternative scenarios, we investigated the southernmost part of the Eclogite-Gneiss Unit (EGU) of Cretaceous metamorphic age exposed in the Pohorje Mountains in Eastern Alps. There, UHP eclogites and ultramafic mantle rocks are exposed in a matrix of paragneiss and hitherto undated granitic orthogneises (Kirst et al., 2010). This study presents, for the first time, geochronological and geochemical data from newly discovered Permian granitic orthogneisses in this area. LA-ICP-MS zircon U–Pb ages of the orthogneisses are 255±2.2 Ma and 260±0.81 Ma, which are interpreted as the age of zircon crystallization in a magma. In contrast, all rounded zircons from paragneissic rocks give Cretaceous ages (89.34±0.69 Ma and 90.8±1.2 Ma), considered as the age of UHP/HP metamorphism. These zircons overgrew older zircons of Permian and rare older ages tentatively indicating that the metasedimentary could be not older than latest Permian. Zircon εHf(t) values of the four ortho- and paragneisses with (<sup>176</sup>Hf/<sup>177</sup>Hf) initial from 0.282201 to 0.282562, T<sub>DM2</sub> are Proterozoic (1390~1970 Ma). The granitic orthogneisses show the geochemical features (high (La/Lu)<sub> N</sub> ratios (160.3–307.3), strong negative Eu anomalies) of an evolved granite molten from continental crust. This type of orthogneisses could be considered as the source magma of seemingly rootless Late Permian to Triassic pegmatites (Knoll et al., 2018) widespread within the EGU further to the north. The paragneisses are heterogeneously composed and are associated with eclogites and ultramafic cumulates of oceanic affinity (De Hoog et al., 2011). We argue that the Permian granitic orthogneisses might be derived from partial melting of lower crust in a rift zone. We consider, therefore, this segment of the EGU as part of the distal Late Permian rift zone, which finally led to the opening of the Meliata Ocean during Middle Triassic times. If true, the new data also imply that the stretched continental crust was potentially not much wider than ca. 100 km, was subducted and then rapidly exhumed during early Late Cretaceous times.</p><p> </p><p><strong>References</strong></p><p>De Hoog, J.C.M., Janák, M., Vrabec, M., Hatton, K.H., 2011. In: Dobrzhinetskaya, L., Faryad, S.W., Wallis, S., Cuthbert, S. (Eds.), Ultrahigh-pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond. Elsevier Insights, pp. 399–439.</p><p>Janák, M., Froitzheim, N., Yoshida, K., Sasinková, V., Nosko, M., Kobayashi, T., Hirajima, T., Vrabec, M., 2015. Journal of Metamorphic Geology 33, 495–512.</p><p>Kirst, F., Sandmann. S., Nagel. T., et al. 2010. Geologica Carpathica 61(6), 451-461.</p><p>Knoll, T., Schuster, R., Huet, B., Mali, H., Onuk, P., Horschinegg, M., Ertl, A., Giester, G., 2018. Canadian Mineralogist 56, 489-528.</p>


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 106
Author(s):  
Xing-Yuan Li ◽  
Jing-Ru Zhang ◽  
Chun-Kit Lai

Jiangxi Province (South China) is one of the world’s top tungsten (W) mineral provinces. In this paper, we present a new LA-ICP-MS zircon U-Pb age and Hf isotope data on the W ore-related Xianglushan granite in northern Jiangxi Province. The magmatic zircon grains (with high Th/U values) yielded an early Cretaceous weighted mean U-Pb age of 125 ± 1 Ma (MSWD = 2.5, 2σ). Zircon εHf(t) values of the Xianglushan granite are higher (−6.9 to −4.1, avg. −5.4 ± 0.7) than those of the W ore-related Xihuanshan granite in southern Jiangxi Province (−14.9 to −11.2, avg. −12.5 ± 0.9), implying different sources between the W ore-forming magmas in the northern and southern Jiangxi Province. Compiling published zircon geochemical data, the oxygen fugacity (fO2) of the late Yanshanian granitic magmas in Jiangxi Province (the Xianglushan, Ehu, Dahutang, and Xihuashan plutons) were calculated by different interpolation methods. As opposed to the W ore-barren Ehu granitic magma, the low fO2 of the Xianglushan granitic magma may have caused W enrichment and mineralization, whilst high fO2 may have led to the coexistence of Cu and W mineralization in the Dahutang pluton. Additionally, our study suggests that the absence of late Mesozoic Cu-Mo mineralization in the Zhejiang, Jiangxi, and Anhui Provinces (Zhe-Gan-Wan region) was probably related to low fO2 magmatism in the Cretaceous.


2018 ◽  
Vol 481 (1) ◽  
pp. 277-298 ◽  
Author(s):  
Masatsugu Ogasawara ◽  
Mayuko Fukuyama ◽  
Rehanul Haq Siddiqui ◽  
Ye Zhao

AbstractThe Mansehra granite in the NW Himalaya is a typical Lesser Himalayan granite. We present here new whole-rock geochemistry, Rb–Sr and Sm–Nd isotope data, together with zircon U–Pb ages and Hf isotope data, for the Mansehra granite. Geochemical data for the granite show typical S-type characteristics. Zircon U–Pb dating yields 206Pb/238U crystallization ages of 483–476 Ma. The zircon grains contain abundant inherited cores and some of these show a clear detrital origin. The 206Pb/238U ages of the inherited cores in the granite cluster in the ranges 889–664, 1862–1595 and 2029 Ma. An age of 664 Ma is considered to be the maximum age of the sedimentary protoliths. Thus the Late Neoproterozoic to Cambrian sedimentary rocks must be the protolith of the Mansehra granitic magma. The initial Sr isotope ratios are high, ranging from 0.7324 to 0.7444, whereas the εNd(t) values range from −9.2 to −8.6, which strongly suggests a large contribution of old crustal material to the protoliths. The two-stage Nd model ages and zircon Hf model ages are Paleoproterozoic, indicating that the protolith sediments were derived from Paleoproterozoic crustal components.


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Sihua Yuan ◽  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Boran Liu ◽  
...  

Abstract The Grobgneis complex, located in the eastern Austroalpine unit of the Eastern Alps, exposes large volumes of pre-Alpine porphyric metagranites, sometimes associated with small gabbroic bodies. To better understand tectonic setting of the metagranites, we carried out detailed geochronological and geochemical investigations on the major part of the porphyric metagranites. LA–ICP–MS zircon U–Pb dating of three metagranites sampled from the Grobgneis complex provides the first reliable evidence for large volumes of Permian plutonism within the pre-Alpine basement of the Lower Austroalpine units. Concordant zircons from three samples yield ages at 272.2 ± 1.2 Ma, 268.6 ± 2.3 Ma and 267.6 ± 2.9 Ma interpreted to date the emplacement of the granite suite. In combination with published ages for other Permian Alpine magmatic bodies, the new U–Pb ages provide evidence of a temporally restricted period of plutonism (“Grobgneis”) in the Raabalpen basement Complex during the Middle Permian. Comparing the investigated basement with that of the West Carpathian basement, we argue that widespread Permian granite magmatism occurred in the Lower Austroalpine units. They belong to the high-K calc-alkaline to shoshonitic S-type series on the base of geochemical data. Zircon Hf isotopic compositions of the Grobgneis metagranites show εHf(t) values of − 4.37 to − 0.6, with TDM2 model ages of 1.31–1.55 Ga, indicating that their protoliths were derived by the recycling of older continental crust. We suggest that the Permian granitic and gabbroic rocks are considered as rifted-related rocks in the Lower Austroalpine units and are contemporaneous with cover sediments.


2017 ◽  
Vol 53 ◽  
pp. 207-240 ◽  
Author(s):  
Nadia Mohammadi ◽  
Les Fyffe ◽  
Christopher R.M. McFarlane ◽  
Kay G. Thorne ◽  
David R. Lentz ◽  
...  

  The Late Silurian to Late Devonian Saint George Batholith in southwestern New Brunswick is a large composite intrusion (2000 km2) emplaced into the continental margin of the peri-Gondwanan microcontinent of Ganderia. The batholith includes: (1) Bocabec Gabbro; (2) equigranular Utopia and Wellington Lake biotite granites; (3) Welsford, Jake Lee Mountain, and Parks Brook peralkaline granites; (4) two-mica John Lee Brook Granite; (6) Jimmy Hill and Magaguadavic megacrystic granites; and (6) rapakivi Mount Douglas Granite. New LA ICP-MS in situ analyses of six samples from the Saint George Batholith are as follows: (1) U-Pb monazite crystallization age of 425.5 ± 2.1 Ma for the Utopia Granite in the western part of the batholith (2) U-Pb zircon crystallization ages of 420.4 ± 2.4 Ma and 420.0 ± 3.5 Ma for two samples of the Utopia Granite from the central part of the batholith; (3) U-Pb zircon crystallization age of 418.0 ± 2.3 Ma for the Jake Lee Mountain Granite; (4) U-Pb zircon crystallization age of 415.5 ± 2.1 Ma for the Wellington Lake Granite; and (5) U-Pb monazite crystallization age of 413.3 ± 2.1 Ma for the John Lee Brook Granite. The new geochronological together with new and existing geochemical data suggest that the protracted magmatic evolution of the Late Silurian to Early Devonian plutonic rocks is related to the transition of the Silurian Kingston arc-Mascarene backarc system from an extensional to compressional tectonic environment during collision of the Avalonian microcontinent with Laurentia followed by slab break-off. 


2019 ◽  
Vol 56 (4) ◽  
pp. 380-398 ◽  
Author(s):  
Jing-gui Sun ◽  
Yun-peng He ◽  
Ji-long Han ◽  
Zhong-yu Wang

The Wuxing Pt–Pd-rich Cu–Ni sulfide deposit in Heilongjiang Province, Northeast China, is located to the northeast of the Dunhua–Mishan fracture of the eastern Central Asian Orogenic Belt. The mafic–ultramafic complex consist of early-period hornblende–olivine pyroxenite, diopsidite, and hornblende pyroxenite and late-period gabbro and diabase units. An early-period hornblende pyroxenite yielded a zircon U–Pb age of 208.2 ± 2.6 Ma and a late-period diabase yielded a U–Pb age of 205.6 ± 1.1 Ma, with zircon εHf(t) values of +1.24 to +8.13. The early- and late-period lithofacies are relatively enriched in LILE (Rb, Ba, and Sr) and LREE, and variably depleted in HFSE (Nb, Ta). The whole-rock and single-mineral analyses of the early-period lithofacies yield (87Sr/86Sr)i ratios of 0.7055–0.7083 and εNd(t) ratios of −7.98–+3.10. These geochemical data suggest that the parental magmas of the Wuxing complex are high-Mg subalkaline basaltic in nature and were derived from an enriched mantle source. The magmas chamber formed after the injection of magma into the crust along with crustal contamination, producing early crystalline minerals and ore-bearing magmas. The rupturing of the magma chamber released evolved magmas, which then ascended and generated Pt–Pd-bearing lithofacies and Cu–Ni sulfide orebodies by fractional crystallization, accumulation, and liquation. During the late period, the residual magma invaded the early lithofacies and Cu–Ni orebodies. The fluids exsolved from the gabbroic magmas concentrated the mineralized metal elements and enhanced the precipitation of Pt–Pd-bearing veinlet-disseminated orebodies and Pt–Pd–Cu–Ni orebodies.


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


Author(s):  
Yu-Wei Tang ◽  
Long Chen ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng

Granitoids at convergent plate boundaries can be produced either by partial melting of crustal rocks (either continental or oceanic) or by fractional crystallization of mantle-derived mafic magmas. Whereas granitoid formation through partial melting of the continental crust results in reworking of the pre-existing continental crust, granitoid formation through either partial melting of the oceanic crust or fractional crystallization of the mafic magmas leads to growth of the continental crust. This category is primarily based on the radiogenic Nd isotope compositions of crustal rocks; positive εNd(t) values indicate juvenile crust whereas negative εNd(t) values indicate ancient crust. Positive εNd(t) values are common for syn-collisional granitoids in southern Tibet, which leads to the hypothesis that continental collision zones are important sites for the net growth of continental crust. This hypothesis is examined through an integrated study of in situ zircon U-Pb ages and Hf isotopes, whole-rock major trace elements, and Sr-Nd-Hf isotopes as well as mineral O isotopes for felsic igneous rocks of Eocene ages from the Gangdese orogen in southern Tibet. The results show that these rocks can be divided into two groups according to their emplacement ages and geochemical features. The first group is less granitic with lower SiO2 contents of 59.82−64.41 wt%, and it was emplaced at 50−48 Ma in the early Eocene. The second group is more granitic with higher SiO2 contents of 63.93−68.81 wt%, and it was emplaced at 42 Ma in the late Eocene. The early Eocene granitoids exhibit relatively depleted whole-rock Sr-Nd-Hf isotope compositions with low (87Sr/86Sr)i ratios of 0.7044−0.7048, positive εNd(t) values of 0.6−3.9, εHf(t) values of 6.5−10.5, zircon εHf(t) values of 1.6−12.1, and zircon δ18O values of 5.28−6.26‰. These isotopic characteristics are quite similar to those of Late Cretaceous mafic arc igneous rocks in the Gangdese orogen, which indicates their derivation from partial melting of the juvenile mafic arc crust. In comparison, the late Eocene granitoids have relatively lower MgO, Fe2O3, Al2O3, and heavy rare earth element (HREE) contents but higher K2O, Rb, Sr, Th, U, Pb contents, Sr/Y, and (La/Yb)N ratios. They also exhibit more enriched whole-rock Sr-Nd-Hf isotope compositions with high (87Sr/86Sr)i ratios of 0.7070−0.7085, negative εNd(t) values of −5.2 to −3.9 and neutral εHf(t) values of 0.9−2.3, and relatively lower zircon εHf(t) values of −2.8−8.0 and slightly higher zircon δ18O values of 6.25−6.68‰. An integrated interpretation of these geochemical features is that both the juvenile arc crust and the ancient continental crust partially melted to produce the late Eocene granitoids. In this regard, the compositional evolution of syn-collisional granitoids from the early to late Eocene indicates a temporal change of their magma sources from the complete juvenile arc crust to a mixture of the juvenile and ancient crust. In either case, the syn-collisional granitoids in the Gangdese orogen are the reworking products of the pre-existing continental crust. Therefore, they do not contribute to crustal growth in the continental collision zone.


Author(s):  
Yiming Liu ◽  
Yuhua Wang ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Runhua Guo ◽  
...  

The Tibetan Plateau is composed of several microblocks, the tectonic affinity and paleogeographic correlations of which remain enigmatic. We investigated the Amdo and Jiayuqiao microblocks in central Tibet Plateau with a view to understand their tectonic setting and paleogeographic position within the Neoproterozoic supercontinent Rodinia. We present zircon U-Pb and Lu-Hf isotope, and whole-rock geochemical data on Neoproterozoic granitic gneisses from these microblocks. Zircon grains from the Jiayuqiao granitic gneiss yielded an age of 857 ± 9 Ma with variable εHf(t) values (−8.9 to 4.0). The Amdo granitic gneisses yielded ages of 893 ± 5 Ma, 807 ± 5 Ma, and 767 ± 11 Ma, with εHf(t) values in the range of −4.9 to 3.5. Geochemically, the granitoids belong to high-K calc-alkaline series, with the protolith derived from partial melting of ancient crustal components. The ascending parental magma of the Amdo granitoids experienced significant mantle contamination as compared to the less contaminated magmas that generated the Jiayuqiao intrusions. In contrast to the Lhasa, Himalaya, South China, and Tarim blocks, we suggest that the Amdo and Jiayuqiao microblocks probably formed a unified block during the Neoproterozoic and were located adjacent to the southwestern part of South China craton. The Neoproterozoic magmatism was probably associated with the subduction of the peripheral ocean under the South China craton and the delamination of lithospheric mantle beneath the Jiangnan orogen.


Sign in / Sign up

Export Citation Format

Share Document