scholarly journals Role of 5-HT7 receptors in the immune system in health and disease

2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Alejandro Quintero-Villegas ◽  
Sergio Iván Valdés-Ferrer

AbstractIn mammalians, serotonin (5-HT) has critical roles in the central nervous system (CNS), including mood stability, pain tolerance, or sleep patterns. However, the vast majority of serotonin is produced by intestinal enterochromaffin cells of the gastrointestinal tract and circulating blood platelets, also acting outside of the CNS. Serotonin effects are mediated through its interaction with 5-HT receptors (5-HTRs), a superfamily with a repertoire of at least fourteen well-characterized members. 5-HT7 receptors are the last 5-HTR member to be identified, with well-defined functions in the nervous, gastrointestinal, and vascular systems. The effects of serotonin on the immune response are less well understood. Mast cells are known to produce serotonin, while T cells, dendritic cells, monocytes, macrophages and microglia express 5-HT7 receptor. Here, we review the known roles of 5-HT7 receptors in the immune system, as well as their potential therapeutic implication in inflammatory and immune-mediated disorders.

2021 ◽  
Vol 40 (4) ◽  
pp. 33-42
Author(s):  
Igor V. Litvinenko ◽  
Miroslav M. Odinak ◽  
Nikolay V. Tsygan ◽  
Aleksander V. Ryabtsev

The central nervous system seems to be quite vulnerable to SARS-CoV-2, leading to a variety of alteration pathways, high incidence and variability of the neurological symptoms of COVID-19. The COVID-19 symptoms, possibly associated with alteration to the central nervous system, include hyperthermia, shortness of breath, fatigue, headache, dizziness, dysphonia, dysphagia, hyposmia and anosmia, hypogeusia and ageusia, impairment of consciousness. The impairment of olfaction and gustation are the most common symptoms of the nervous system alteration (98% and 70%, respectively), which is most likely a consequence of the alteration of the receptors. Presumably the pathogenesis of dysphonia and dysphagia may involve neurodegenerative mechanisms or may be associated with a predominantly demyelinating alteration of the caudal cranial nerves. Pathomorphological findings in the brain of the COVID-19 patients include diffuse hypoxic and focal ischemic injuries of various sizes up to ischemic infarctions (in thrombosis of large arteries); microangiopathy; vasculitis; diapedetic and confluent hemorrhages with possible progression to hemorrhagic infarctions and rarely intracerebral hematomas. Acute cerebrovascular accident worsens the course of COVID-19 and can worsen the clinical outcome, taking into account the mechanisms of the central nervous system alteration in highly contagious coronavirus infections (SARS-CoV, MERS, SARS-CoV-2), including embolism, hypoxia, neurodegeneration, systemic inflammatory response and immune-mediated alteartion to the nervous tissue. A fairly rare complication of coronavirus infection, however, acute myelitis requires attention due to the severity of neurological disorders. The literature data show high incidence and polymorphism of the symptoms of the central nervous system alteration, as well as the important role of the cerebrovascular and neurodegenerative pathogenesis of brain alteration in COVID-19, which is taken into account in examining and treating the patients with new coronavirus infection. (1 figure, bibliography: 61 refs)


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 437 ◽  
Author(s):  
Edoardo Parrella ◽  
Vanessa Porrini ◽  
Marina Benarese ◽  
Marina Pizzi

Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.


Physiology ◽  
2000 ◽  
Vol 15 (5) ◽  
pp. 250-255
Author(s):  
Michael A. Klein ◽  
Adriano Aguzzi

Prion diseases are fatal neurodegenerative disorders of animals and humans. Here we address the role of the immune system in the spread of prions from peripheral sites to the central nervous system and its potential relevance to iatrogenic prion disease.


2019 ◽  
Vol 10 ◽  
Author(s):  
Alaeddine Djillani ◽  
Jean Mazella ◽  
Catherine Heurteaux ◽  
Marc Borsotto

Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Francesca Gado ◽  
Maria Digiacomo ◽  
Marco Macchia ◽  
Simone Bertini ◽  
Clementina Manera

Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids (synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.


2021 ◽  
Author(s):  
Maurício Machado Lenhardt ◽  
Dauana Schwartz ◽  
Bruna K. de F. Silva

Introduction: Depression is a disease of uncertain installation and etiology, the imbalance of neurotransmitters is involved in this process, and stress can be an activator of pro-inflammatory cytokines and trigger depressive symptoms. The organism undergoes modulations due to biochemical changes and these are linked to molecular and biochemical components and by the survival instinct, the human body is stimulated to release substances as a form of protection. The objective of this study is to describe the possible association between a loss of homeostasis of the central nervous system (CNS), changes in the modulation of the immune system, and the development of depressive symptoms. Methods: This is an integrative literature review, available in the virtual health databases: PubMed, MEDLINE, SciELO, and Google Scholar published between the years 2010 to 2020. Results: Studies indicate that cytokines can interfere with the homeostasis of the CNS and that the imbalance of catecholamines and indoleamine is involved in the process of depression. In this sense, studies have focused on neuromodulation by blocking neurotransmitters and neuroreceptors to regulate the immune system. Conclusion: It’s already established that the imbalance in the release and reuptake of neurotransmitters is associated with the onset of the depression, however, current studies show that there may also be an association with the homeostasis of the immune system. Therapeutic protocols aren’t based on the correlation between the immune system and the onset of the disease, so further studies are needed to strengthen this relationship.


Sign in / Sign up

Export Citation Format

Share Document