scholarly journals RSDM: A Powerful Direct Method to Predict the Asymptotic Cyclic Behavior of Elastoplastic Structures

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Konstantinos V. Spiliopoulos ◽  
Ioannis A. Kapogiannis

AbstractMechanical engineering structures and structural components are often subjected to cyclic thermomechanical loading which stresses their material beyond its elastic limits well inside the inelastic regime. Depending on the level of loading inelastic strains may lead either to failure, due to low cycle fatigue or ratcheting, or to safety, through elastic shakedown. Thus, it is important to estimate the asymptotic stress state of such structures. This state may be determined by cumbersome incremental time-stepping calculations. Direct methods, alternatively, have big computational advantages as they focus on the characteristics of these states and try to establish them, in a direct way, right from the beginning of the calculations. Among the very few such general-purpose direct methods, a powerful direct method which has been called RSDM has appeared in the literature. The method may directly predict any asymptotic state when the exact time history of the loading is known. The advantage of the method is due to the fact that it addresses the physics of the asymptotic cycle and exploits the cyclic nature of its expected residual stress distribution. Based on RSDM a method for the shakedown analysis of structures, called RSDM-S has also been developed. Despite most direct methods for shakedown, RSDM-S does not need an optimization algorithm for its implementation. Both RSDM and RSDM-S may be implemented in any Finite Element Code. A thorough review of both these methods, together with examples of implementation are presented herein.

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
K. D. Panagiotou ◽  
K. V. Spiliopoulos

To extend the life of a structure, or a component, which is subjected to cyclic thermomechanical loading history, one has to provide safety margins against excessive inelastic deformations that may lead either to low-cycle fatigue or to ratcheting. Direct methods constitute a convenient tool toward this direction. Two direct methods that have been named residual stress decomposition method (RSDM) and residual stress decomposition method for shakedown (RSDM-S) have recently appeared in the literature. The first method may predict any cyclic elastoplastic state for a given cyclic loading history. The second method RSDM-S that is based upon RSDM is suggested for the shakedown analysis of structures. Both methods may be directly implemented in any finite-element (FE) code. An elastic perfectly plastic material with a von Mises yield surface has been assumed. In this work, through their application to structures that are used as benchmarks in the literature, both methods, applied together, prove their efficiency and capacity to determine shakedown boundaries and reveal unsafe conditions.


Author(s):  
Olena Bundak ◽  
Nataliia Zubovetska

A method and computer program ConRow, which prognostication of development of the dynamically CPLD economic transients is executed by, is described in the article. Such prognostication of economic processes is very important in the cases when their development can result in undesirable consequences, that to go out in the so-called critical area. Extrapolation in a critical area with the use of information about the conduct of the system at an area, near to it, allows to estimate to the lead through of experiment in the critical area of his consequence. For the imitation of conduct of object the function of review is set on entrance influence. For a concrete object this function can express, for example, dependence of change of level sale from time-history of charges on advertising and set as a numeral row. Statistics as a result of analysis of row are represented in a table, where the level of meaningfulness is set statistician, and also parameters of the handed over criteria. The graphic reflection of information is intended for visualization of analysis. Here represented on the points of graphic arts, the crooked smoothing which are calculated as полиномиальные regressions is added. The best approaching is controlled by sight on the proper graph, and also by minimization of their rms errors. Models of prognostication by sight and as formulas represented on graphic arts, the middle is here determined tailings and their chance is checked up on statistics of signs. After the got models determined also and prognosis values of influences and reviews. Establishing an order models of Сr(p) of co integrate regression is carried out separate custom controls. The coefficient of clay correlation of ruФ shows by itself pair correlation between lines with a successive change in relation to each other on a size to лагу of l = 1, 2, 3 . The program was tested on the example of ex-post prognosis at establishing an integration connection and possibility of prognostication of growth of nominal average monthly settlings on the basis of these statistical indexes of consumer inflation in Ukraine.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 73
Author(s):  
Osman Hansu ◽  
Esra Mete Güneyisi

This study addresses an alternative use of viscous dampers (VDs) associated with buckling restrained braces (BRBs) as innovative seismic protection devices. For this purpose, 4-, 8- and 12-story steel bare frames were designed with 6.5 m equal span length and 4 m story height. Thereafter, they were seismically improved by mounting the VDs and BRBs in three patterns, namely outer bays, inner bays, and all bays over the frame heights. The structures were modeled using SAP 2000 software and evaluated by the nonlinear time history analyses subjected to the six natural ground motions. The seismic responses of the structures were investigated for the lateral displacement, interstory drift, absolute acceleration, maximum base shear, and time history of roof displacement. The results clearly indicated that the VDs and BRBs reduced seismic demands significantly compared to the bare frame. Moreover, the all-bay pattern performed better than the others.


2020 ◽  
Author(s):  
Simone Zen ◽  
Jan C. Thomas ◽  
Eric V. Mueller ◽  
Bhisham Dhurandher ◽  
Michael Gallagher ◽  
...  

AbstractA new instrument to quantify firebrand dynamics during fires with particular focus on those associated with the Wildland-Urban Interface (WUI) has been developed. During WUI fires, firebrands can ignite spot fires, which can rapidly increase the rate of spread (ROS) of the fire, provide a mechanism by which the fire can pass over firebreaks and are the leading cause of structure ignitions. Despite this key role in driving wildfire dynamics and hazards, difficulties in collecting firebrands in the field and preserving their physical condition (e.g. dimensions and temperature) have limited the development of knowledge of firebrand dynamics. In this work we present a new, field-deployable diagnostic tool, an emberometer, designed to provide measurement of firebrand fluxes and information on both the geometry and the thermal conditions of firebrands immediately before deposition by combining a visual and infrared camera. A series of laboratory experiments were conducted to calibrate and validate the developed imaging techniques. The emberometer was then deployed in the field to explore firebrand fluxes and particle conditions for a range of fire intensities in natural pine forest environments. In addition to firebrand particle characterization, field observations with the emberometer enabled detailed time history of deposition (i.e. firebrand flux) relative to concurrent in situ fire behaviour observations. We highlight that deposition was characterised by intense, short duration “showers” that can be reasonably associated to spikes in the average fire line intensity. The results presented illustrate the potential use of an emberometer in studying firebrand and spot fire dynamics.


1988 ◽  
Vol 110 (2) ◽  
pp. 205-209
Author(s):  
A. V. Singh

This paper presents the random vibration analysis of a simply supported cylindrical shell under a ring load which is uniform around the circumference. The time history of the excitation is assumed to be a stationary wide-band random process. The finite element method and the condition of symmetry along the length of the cylinder are used to calculate the natural frequencies and associated mode shapes. Maximum values of the mean square displacements and velocities occur at the point of application of the load. It is seen that the transient response of the shell under wide band stationary excitation is nonstationary in the initial stages and approaches the stationary solution for large value of time.


1964 ◽  
Vol 179 (1) ◽  
pp. 222-233 ◽  
Author(s):  
A. P. Vafiadakis ◽  
W. Johnson ◽  
I. S. Donaldson

Earlier work on a water-hammer technique for high-rate forming of sheet metal has been extended to include work on deep drawing using lead plugs. A study of the pressure-time history of a deforming blank during its initial movement is reported. An assessment of the overall efficiency of the process has been made and is found to be about 50 per cent; this is an order of magnitude better than that found with comparable electro-hydraulic and explosive methods.


Author(s):  
H. Nasr ◽  
G. Ahmadi ◽  
J. B. McLaughlin

This study is concerned with the effect of inter particle collisions on the particle concentration in turbulent duct flows. The time history of the instantaneous turbulent velocity vector was generated by the two-way coupled direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method. The particle equation of motion included the Stokes drag, the Saffman lift, and the gravitational forces. The effect of particles on the flow is included in the analysis via a feedback force on the grid points. Several simulations for three classes of particles (28 μm Lycopodia, 50μm glass and 70μm copper) and different mass loadings were performed, and the effect of inter particle collisions on the particle concentration was evaluated and discussed. It was found that the particle-particle collisions reduce the tendency of particles to accumulate near the wall. This might be because collisions decorrelate particles with coherent eddies which are responsible for accumulation of particles near the wall. The spatial distribution of particles at the channel centerplane was compared with the experimental results of Fessler et al. (1994). The simulation results showed that the copper and glass particles had a random distribution while Lycopodium particles showed a non-random distribution with bands of particles that were preferentially concentrated.


Author(s):  
Sunil K. Sinha ◽  
Kevin E. Turner ◽  
Nitesh Jain

In the present paper, a hydrodynamic bird material model made up of water and air mixture is developed, which produces good correlation with the measured strain-gauge test data in a panel test. This parametric bird projectile model is used to generate the time-history of the transient dynamic loads on the turbofan engine blades for different size birds impacting at varying span locations of the fan blade. The problem is formulated in 3D vector dynamics equations using a nonlinear trajectory analysis approach. The analytical derivation captures the physics of the slicing process by considering the incoming bird in the shape of a cylindrical impactor as it comes into contact with the rotating fan blades modeled as a pretwisted plate with a camber. The contact-impact dynamic loading on the airfoil produced during the bird-strike is determined by solving the coupled nonlinear dynamical equations governing the movement of the bird-slice in time-domain using a sixth-order Runge-Kutta technique. The analytically predicted family of load time-history curves enables the blade designer to readily identify the critical impact location for peak dynamic loading condition during the bird-ingestion tests mandated for certification by the regulatory agencies.


Sign in / Sign up

Export Citation Format

Share Document