scholarly journals Assessing the leaching behavior of different gunshot materials in natural spring waters

2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Julian Fäth ◽  
Axel Göttlein

Abstract Background Owing to the high environmental risk of lead-based gunshot, especially as the main source of acute lead poisoning in waterfowl, restrictions on its use in European wetlands are being put into place. In order to assess potential risks of alternative gunshot pellets to aquatic systems, we validated a recently published study that compared the leaching behavior of different game shot materials in an artificial solution and their toxicological effects to Daphnia magna. We therefore investigated the altered leaching of shot materials in natural spring waters. Results The different water conditions (geology/redox conditions) had a strong influence on the leaching behavior of the examined shot types. Spring water originating from siliceous bedrock showed the highest concentrations of nearly all leached metals under aerobic conditions. The results were similar to the former study, which used an artificial standardized medium for daphnids. Conclusions According to the conducted leaching tests, Cu- and Zn-based as well as Zn-coated gunshot should be avoided by reason of the high risks they pose to the aquatic environment. Furthermore, the use of Pb-based and Ni-alloyed or -coated game shot also should be hampered owing to their impact on birds or other wildlife. Since some of these shot materials are still on the European market, an effective toxicity screening of alternative gunshot materials is necessary. By conducting standardized leaching tests, in addition to chemical compositional standards and toxicity tests regarding birds, the environmental risks of each game shot would entirely be assessed. The method presented in this study provides a further step for initial ecotoxicological risk assessment of gunshot for aquatic systems, since it additionally assesses minor components, like thin coatings, which also can have a high impact to these ecosystems.

2021 ◽  
Vol 22 (17) ◽  
pp. 9396
Author(s):  
Chloë Maes ◽  
Jeroen Meersmans ◽  
Laurence Lins ◽  
Sandrine Bouquillon ◽  
Marie-Laure Fauconnier

In recent years, the development of new bio-based products for biocontrol has been gaining importance as it contributes to reducing the use of synthetic herbicides in agriculture. Conventional herbicides (i.e., the ones with synthetic molecules) can lead to adverse effects such as human diseases (cancers, neurodegenerative diseases, reproductive perturbations, etc.) but also to disturbing the environment because of their drift in the air, transport throughout aquatic systems and persistence across different environments. The use of natural molecules seems to be a very good alternative for maintaining productive agriculture but without the negative side effects of synthetic herbicides. In this context, essential oils and their components are increasingly studied in order to produce several categories of biopesticides thanks to their well-known biocidal activities. However, these molecules can also be potentially hazardous to humans and the environment. This article reviews the state of the literature and regulations with regard to the potential risks related to the use of essential oils as bioherbicides in agricultural and horticultural applications.


ADMET & DMPK ◽  
2020 ◽  
Author(s):  
Daniela Dascălu ◽  
Diana Larisa Roman ◽  
Madalina Filip ◽  
Alecu Aurel Ciorsac ◽  
Vasile Ostafe ◽  
...  

<p class="ADMETkeywordsheading">Polylactic acid (PLA) is a polymer with an increased potential to be used in different medical applications, including tissue engineering and drug-carries. The use of PLA in medical applications implies the evaluation of the human organism's response to the polymer inserting and to its degradation products. Consequently, within this study, we have investigated the solubility and ADMET profiles of the short oligomers (having the molecular weight lower than 3000 Da) resulting in degradation products of PLA. There is a linear decrease of the molar solubility of investigated oligomers with molecular weight. The results that are obtained also reveal that short oligomers of PLA have promising pharmacological profiles and limited toxicological effects on humans. These oligomers are predicted as potential inhibitors of the organic anion transporting peptides OATP1B1 and OATP1B3, they present minor probability to affect the androgen and glucocorticoid receptors, have a weak potential of hepatotoxicity, and may produce eye injuries. These outcomes may be used to guide or to supplement in vitro and/or in vivo toxicity tests such as to enhance the biodegradation properties of the biopolymer.</p>


2017 ◽  
Vol 62 ◽  
pp. 139-146 ◽  
Author(s):  
Wenlin Yvonne Lin ◽  
Kim Soon Heng ◽  
Minh Quan Nguyen ◽  
Jin Rui Ivan Ho ◽  
Omar Ahmad Bin Mohamed Noh ◽  
...  

Author(s):  
Ines Sifaoui ◽  
Idaira Pacheco-Fernández ◽  
José E. Piñero ◽  
Verónica Pino ◽  
Jacob Lorenzo-Morales

In this study, the application of amphipods in vivo assays was evaluated. The main aim of this work was to check the potential use of this model in biocompatibility assessments of metal-organic frameworks (MOFs). Hence, six different MOFs were synthesized and the in vitro and ex vivo cytotoxicity was first assessed using a colorimetric assay and a macrophage cell line. Obtained results were compared to validate the in vivo toxicity tests carried out using amphipods and increasing concentrations of the different MOFs. Amphipods do not require the need of ethics approval and also are less expensive to keep than conventional in vivo models, showing its potential as a fast and reliable platform in toxicity studies. The obtained results showed that the amphipods based-assay was simple, easy to replicate and yielded toxicity data corresponding to the type of MOFs tested. In addition, it was observed that only CIM-80(Al) and CIM-84(Zr) did not show any toxicity to the animals at the different tested concentrations. Therefore, the developed in vivo model could be applied as a high-throughput toxicity screening method to evaluate the toxicity of numerous materials, chemicals and therapeutic agents among others.


2021 ◽  
Author(s):  
An Xuehua ◽  
Liu Xinju ◽  
Jiang Jinhua ◽  
Wang Feidi ◽  
Lv Lu ◽  
...  

Abstract Prothioconazole (PTC) is a broad-spectrum triazole fungicide. Current research has mainly focused on its efficacy and residues, with few studies on its toxicological effects. This study assessed the effects of PTC, and its metabolite prothioconazole-desthio (PTCd), on the inhibition of activity, growth, and reproduction of Daphnia magna using acute and chronic toxicity tests. Additionally, the dose-response relationship was established to determine sensitive biological indicators. The acute toxicity test shows that the 48 h EC50 of PTC and PTCd to D. magna were 2.82 and 5.19 mg/L, respectively. The chronic toxicity of PTC and PTCd to D. magna were 0.00860 and 0.132 mg/L, respectively, with the parent compound being 15.3 times more toxic than its metabolite. The acute to chronic toxicity ratio (ACR) was calculated using chronic toxicity data, with ACR values of 227 and 27.5 for PTC and PTCd, respectively. These results indicate that both PTC and PTCd affect the growth and reproduction of D. magna, and the toxicity of the parent compound is greater than that of its metabolite. In conclusion, the metabolites of this pesticide have sufficient toxicity to harm D. magna at relevant environmental concentrations, and their environmental risk should not be neglected.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Foday M. Jaward ◽  
Henry A. Alegria ◽  
Jose G. Galindo Reyes ◽  
Armando Hoare

PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development.


Sign in / Sign up

Export Citation Format

Share Document