scholarly journals Target screening of plant secondary metabolites in river waters by liquid chromatography coupled to high-resolution mass spectrometry (LC–HRMS)

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites (PSMs) almost no data on occurrence in the water cycle are available. These metabolites enter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation and might add to the biological activity of the chemical mixture. To reduce this data gap, we conducted a LC–HRMS target screening in river waters from two different catchments for 150 plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results The screening revealed the presence of 12 out of 150 possibly toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L. Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions Our study provides an overview of potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.

2020 ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background: Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites (PSMs) almost no data on occurrence in the water cycle are available. These metabolites enter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation and might add to the biological activity of the chemical mixture. To reduce this data gap we conducted a LC-HRMS target screening in river waters from two different catchments for 150 plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results: The screening revealed the presence of 12 out of 150 possibly toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L. Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions: Our study provides an overview of potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.


Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background:Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites(PSMs) almost no data on occurrence in the water cycle are available.These metabolitesenter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation andmight add to the biological activity of the chemical mixture.To reduce this data gap we conducted aLC-HRMS target screening in river waters from two different catchments for 150plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results: The screening revealed the presence of 12out of 150toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L.Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions: Our study provides a first insight into potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.


2020 ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Werner Brack

Abstract Background: In surface waters, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), typically large numbers of chemical signals often with high peak intensity remain unidentified. These chemical signals may represent natural compounds released from plants, animals and microorganisms, which may contribute to the cumulative toxic risk. Thus, attempts were made to identify natural compounds in significant concentrations in surface waters by identifying overlapping LC-HRMS peaks between extracts of plants abundant in the catchment and river waters using a non-target screening (NTS) work flow. Results: The result revealed the presence of several thousands of overlapping peaks between water – and plants from local vegetation. Taking this overlap as a basis, 12 SPMs from different compound classes were identified to occur in river waters with flavonoids as a dominant group. The concentrations of the identified compounds ranged from 0.02 to 5 µg/L with apiin, hyperoside and guanosine with highest concentrations. Most of the identified compounds exceeded the threshold for toxicological concern (TTC) (0.1 µg/L) for non-genotoxic and non-endocrine disrupting chemicals in drinking water often by more than one order of magnitude. Conclusion: Our results revealed the contribution of chemicals eluted from the vegetation in the catchment to the chemical load in surface waters and help to reduce the number of unknowns among NTS high-intensity peaks detected in rivers. Since secondary plant metabolites (SPMs) are often produced for defence against other organisms and since concentrations ranges are clearly above TTC a contribution to toxic risks on aquatic organisms and impacts on drinking water safety cannot be excluded. This demands for including these compounds into monitoring and assessment of water quality.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Werner Brack

Abstract Background In surface waters, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), typically large numbers of chemical signals often with high peak intensity remain unidentified. These chemical signals may represent natural compounds released from plants, animals and microorganisms, which may contribute to the cumulative toxic risk. Thus, attempts were made to identify natural compounds in significant concentrations in surface waters by identifying overlapping LC-HRMS peaks between extracts of plants abundant in the catchment and river waters using a non-target screening (NTS) work flow. Results The result revealed the presence of several thousands of overlapping peaks between water—and plants from local vegetation. Taking this overlap as a basis, 12 SPMs from different compound classes were identified to occur in river waters with flavonoids as a dominant group. The concentrations of the identified compounds ranged from 0.02 to 5 µg/L with apiin, hyperoside and guanosine with highest concentrations. Most of the identified compounds exceeded the threshold for toxicological concern (TTC) (0.1 µg/L) for non-genotoxic and non-endocrine disrupting chemicals in drinking water often by more than one order of magnitude. Conclusion Our results revealed the contribution of chemicals eluted from the vegetation in the catchment to the chemical load in surface waters and help to reduce the number of unknowns among NTS high-intensity peaks detected in rivers. Since secondary plant metabolites (SPMs) are often produced for defence against other organisms and since concentrations ranges are clearly above TTC a contribution to toxic risks on aquatic organisms and impacts on drinking water safety cannot be excluded. This demands for including these compounds into monitoring and assessment of water quality.


2021 ◽  
Author(s):  
◽  
Mulatu Yohannes Nanusha

A large number of chemicals are constantly introduced to surface water from anthropogenic and natural sources. Although substantial efforts have been made to identify these chemicals (e.g potentially anthropogenic contaminants) in surface waters using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), a large number of LC-HRMS chemical signals often with high peak intensity are left unidentified. In addition to synthetic chemicals and transformation products, these signals may also represent plant secondary metabolites (PSMs) released from vegetation through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation. While this may be considered as a confounding factor in screening of water contaminants, it could also contribute to the cumulative toxic risk of water contamination. However, it is hardly known to what extent these metabolites contribute to the chemical mixture of surface waters. Thus, reducing the number of unknowns in water samples by identifying also PSMs in significant concentrations in surface waters will help to improve monitoring and assessment of water quality potentially impacted by complex mixtures of natural and synthetic compounds. Therefore, the main focus of the present study was to identify the occurrence of PSMs in river waters and explore the link between the presence of vegetation along rivers and detection of their corresponding PSMs in river water. In order to achieve the goals of the present thesis, two chemical screening approaches, namely, non-target and target screening using LC-HRMS were implemented. (1) Non-target analysis involving a novel approach has been applied to associate unknown peaks of high intensity in LC-HRMS to PSMs from surrounding vegetation by focusing on peaks overlapping between river water and aqueous plant extracts (Annex A1). (2) LC–HRMS target screening in river waters were performed for about 160 PSMs, which were selected from a large phytotoxin database (Annex A2 and A3) considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. In non-target screening (Annex A1), a high number of overlapping peaks has been found in between aqueous plant extracts and water from adjacent location, suggesting a significant impact of vegetation on chemical mixtures detectable in river waters. The chemical structures were assigned for 12 pairs of peaks while several pairs of peaks whose MS/MS spectra matched but no structure suggestion were made by the implemented software tools for retrieving possible chemical structure. Nevertheless, the pairs of peaks with matching spectra represented the same chemical structure. The identified compound belonged to different compound classes such as coumarins, flavonoids besides others. For the identified PSMs individual concentration up to 5 µg/L were measured. The concentration and the number of detected PSMs per sample were correlated with the rain event and vegetation coverage. Target screening unraveled the occurrence of 33 out of 160 target compounds in river waters (Annex A2 and A3). The identified compounds belonged to different classes such as alkaloids, coumarins, flavonoids, and other compounds. Individual compound concentrations were up to several thousand ng/L with the toxic alkaloids narciclasine and lycorine recording highest maximum concentrations. The neurotoxic alkaloid coniine from poison hemlock was detected at concentrations up to 0.4 µg/L while simple coumarins esculetin and fraxidin occurred at concentrations above 1 µg/L. The occurrence of some PSMs in river water were correlated to the specific vegetation growing along the rivers while the others were linked to a wide range of vegetation. As an example, narciclasine and lycorine was emitted by the dominant plant species from Amaryllidaceae family (e.g. Galanthus nivalis (snow drop), Leucojum vernum and Anemone nemorosa) while intermedine and echimidine were from Symphytum officinale. The ubiquitous occurrence of simple coumarins fraxidin, scopoletin and aesculetin could be linked to their presence in a wide range of vegetation. Due to lack of aquatic toxicity data for the identified PSMs (in both target and non-target) and extremely scarce exposure data, no reliable risk assessment was possible. Alternatively, risk estimation was performed using the threshold for toxicological concern (TTC) concept developed for drinking water contaminants. Many of the identified PSMs exceeded the TTC value (0.1 µg/L) thus caution should be taken when using such surface waters for drinking water abstraction or recreational use. This thesis provides an overview of the occurrence of PSMs in river water impacted by the massive presence of vegetation. Concentration for many of the identified PSMs are well within the range of those of synthetic environmental contaminants. Thus, this study adds to a series of recent results suggesting that possibly toxic PSMs occur in relevant concentrations in European surface waters and should be considered in monitoring and risk assessment of water resources. Aquatic toxicity data for PSMs are extensively lacking but are required to include these compounds in the assessment of risks to aquatic organisms and for eliminating risks to human health during drinking water production.


2020 ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Werner Brack

Abstract Background: Surface waters may contain a large number of chemicals detectable as signals in liquid chromatography-high resolution mass spectrometry (LC-HRMS) including a large fraction of unknown chemicals often with high peak intensity. In addition to synthetic chemicals these signals may represent also natural compounds released from plants, animals and microorganisms, which may contribute to the cumulative toxic risk. Thus, attempts were made to identify natural compounds in significant concentrations in surface waters by identifying overlapping LC-HRMS peaks between extracts of plants abundant in the catchment and river waters using a non-target screening (NTS) work flow. Results: The result revealed the presence of several thousands of overlapping peaks between water – plant pairs, of which 12 SPMs were identified to occur in river waters from different compound classes with flavonoids as a dominant group. The concentrations of the identified compounds ranged from 0.02 to 5 µg/L with apiin, hyperoside and guanosine with highest concentrations. Most of the identified compounds exceeded the threshold for toxicological concern (TTC) (0.1 µg/L) for non-genotoxic and non-endocrine disrupting chemicals in drinking water often by more than one order of magnitude. Conclusion: Our results revealed the contribution of chemicals eluted from the vegetation in the catchment to chemical load in surface waters and help to reduce the number of unknowns among NTS high-intensity peaks detected in rivers. Since SPMs are often produced for defence against other organisms and since concentrations ranges are clearly above TTC a contribution to toxic risks on aquatic organisms and impacts on drinking water safety cannot be excluded. This demands for including these compounds into monitoring and assessment of water quality.


Metabolites ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 97 ◽  
Author(s):  
Hammad Ismail ◽  
Anna L. Gillespie ◽  
Danielle Calderwood ◽  
Haroon Iqbal ◽  
Colene Gallagher ◽  
...  

Plant secondary metabolites are protective dietary constituents and rol genes evidently increase the synthesis of these versatile phytochemicals. This study subjected a globally important vegetable, lettuce (Lactuca sativa) to a combination of untargeted metabolomics (LC-QTof-MS) and in vitro bioactivity assays. Specifically, we examined the differences between untransformed cultured lettuce (UnT), lettuce transformed with either rolABC (RA) or rolC (RC) and commercially grown (COM) lettuce. Of the 5333 metabolite features aligned, deconvoluted and quantified 3637, 1792 and 3737 significantly differed in RA, RC and COM, respectively, compared with UnT. In all cases the number of downregulated metabolites exceeded the number increased. In vitro bioactivity assays showed that RA and RC (but not COM) significantly improved the ability of L. sativa to inhibit α-glucosidase, inhibit dipeptidyl peptidase-4 (DPP-4) and stimulate GLP-1 secretion. We putatively identified 76 lettuce metabolites (sesquiterpene lactones, non-phenolic and phenolic compounds) some of which were altered by several thousand percent in RA and RC. Ferulic acid levels increased 3033–9777%, aminooxononanoic acid increased 1141–1803% and 2,3,5,4′tetrahydroxystilbene-2-O-β-d-glucoside increased 40,272–48,008%. Compound activities were confirmed using commercially obtained standards. In conclusion, rol gene transformation significantly alters the metabolome of L.sativa and enhances its antidiabetic properties. There is considerable potential to exploit rol genes to modulate secondary metabolite production for the development of novel functional foods. This investigation serves as a new paradigm whereby genetic manipulation, metabolomic analysis and bioactivity techniques can be combined to enable the discovery of novel natural bioactives and determine the functional significance of plant metabolites.


2016 ◽  
Vol 11 (4) ◽  
pp. 844 ◽  
Author(s):  
Vivek K. Bajpai ◽  
Rajib Majumder ◽  
Jae Gyu Park

<p>Chromatographic techniques have significant role in natural products chemistry as well as contribute dramatically in the discovery of novel and innovative compounds of pharmaceutical and biomedical importance. This study focused on step-by-step visual demonstration of fractionation and isolation of biologically active plant secondary metabolites using column-chromatographic techniques. Isolation of bioactive compounds using column-chromatographic involves: a) Preparation of sample; b) Packing of column; c) Pouring of sample into the column; d) Elution of fractions; and e) Analysis of each fractions using thin layer chromatography. However, depending on nature of research, compounds can be further purified using high performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) spectral analyses.</p><p><strong>Video Clips</strong></p><p><a href="https://www.youtube.com/v/pr8mrBoI8xA">Part 1:</a> 3 min 45 sec</p><p><a href="https://www.youtube.com/v/rYrfClKn-og">Part 2:</a> 6 min 21 sec</p><p><a href="https://www.youtube.com/v/kffHXxuPwbo">Part 3</a>: 4 min 45 sec</p>


2020 ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Bettina Gro Soerensen ◽  
Tobias Schulze ◽  
Bjarne W. Strobel ◽  
...  

Abstract Background: A large number of chemicals are constantly introduced to surface water from anthropogenic and natural sources. So far, unlike anthropogenic pollutants, naturally occurring compounds are not included in environmental monitoring programs due to limited knowledge on their occurrence and effects in the environment. Since first studies suggest that natural compounds might contribute to mixture risks in aquatic ecosystems and for drinking water production, there is a need to increase empirical evidence on the occurrence of these compounds in aquatic systems. To this end, we performed target screening on 160 toxic secondary plant metabolites (PSMs), prioritized in silico for their likelihood of occurrence, persistence, toxicity and mobility in river waters, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). The samples were collected during rain events from three Danish rivers from an area covered by grassland, forest and agricultural crops. Results: In total, 27 targets belonging to different compound classes such as alkaloids, coumarins and flavonoids were detected, among them 12 compounds, which have not been reported in surface waters before. The most prominent compound class was the group of alkaloids with 41 % of the detected targets, many of them detected in more than 80 % of the samples. Individual compound concentrations were up to several hundred ng/L with the neurotoxic alkaloid coniine from poison hemlock and the flavonoid daidzein reaching highest maximum concentrations. Conclusions: The measured natural toxin concentrations are well within the range of those of synthetic environmental contaminants and need to be considered for the assessment of potential risks on aquatic organisms and drinking water production.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jelmer Hoeksma ◽  
Tim Misset ◽  
Christie Wever ◽  
Johan Kemmink ◽  
John Kruijtzer ◽  
...  

AbstractThere is a constant need for new therapeutic compounds. Fungi have proven to be an excellent, but underexplored source for biologically active compounds with therapeutic potential. Here, we combine mycology, embryology and chemistry by testing secondary metabolites from more than 10,000 species of fungi for biological activity using developing zebrafish (Danio rerio) embryos. Zebrafish development is an excellent model for high-throughput screening. Development is rapid, multiple cell types are assessed simultaneously and embryos are available in high numbers. We found that 1,526 fungal strains produced secondary metabolites with biological activity in the zebrafish bioassay. The active compounds from 39 selected fungi were purified by liquid-liquid extraction and preparative HPLC. 34 compounds were identified by a combination of chemical analyses, including LCMS, UV-Vis spectroscopy/ spectrophotometry, high resolution mass spectrometry and NMR. Our results demonstrate that fungi express a wide variety of biologically active compounds, consisting of both known therapeutic compounds as well as relatively unexplored compounds. Understanding their biological activity in zebrafish may provide insight into underlying biological processes as well as mode of action. Together, this information may provide the first step towards lead compound development for therapeutic drug development.


Sign in / Sign up

Export Citation Format

Share Document