scholarly journals Genetic diversity and effective population sizes of thirteen Indian cattle breeds

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Eva M. Strucken ◽  
Netsanet Z. Gebrehiwot ◽  
Marimuthu Swaminathan ◽  
Sachin Joshi ◽  
Mohammad Al Kalaldeh ◽  
...  

Abstract Background The genetic structure of a diverse set of 15 Indian indigenous breeds and non-descript indigenous cattle sampled from eight states was examined, based on 777 k single nucleotide polymorphism (SNP) genotypes obtained on 699 animals, with sample sizes ranging from 17 to 140 animals per breed. To date, this is the largest and most detailed assessment of the genetic diversity of Indian cattle breeds. Results Admixture analyses revealed that 109 of the indigenous animals analyzed had more than 1% Bos taurus admixture of relatively recent origin. Pure indigenous animals were defined as having more than 99% Bos indicus ancestry. Assessment of the genetic diversity within and between breeds using principal component analyses, F statistics, runs of homozygosity, the genomic relationship matrix, and maximum likelihood clustering based on allele frequencies revealed a low level of genetic diversity among the indigenous breeds compared to that of Bos taurus breeds. Correlations of SNP allele frequencies between breeds indicated that the genetic variation among the Bos indicus breeds was remarkably low. In addition, the variance in allele frequencies represented less than 1.5% between the Indian indigenous breeds compared to about 40% between Bos taurus dairy breeds. Effective population sizes (Ne) increased during a period post-domestication, notably for Ongole cattle, and then declined during the last 100 generations. Although we found that most of the identified runs of homozygosity are short in the Indian indigenous breeds, indicating no recent inbreeding, the high FROH coefficients and low FIS values point towards small population sizes. Nonetheless, the Ne of the Indian indigenous breeds is currently still larger than that of Bos taurus dairy breeds. Conclusions The changes in the estimates of effective population size are consistent with domestication from a large native population followed by consolidation into breeds with a more limited population size. The surprisingly low genetic diversity among Indian indigenous cattle breeds might be due to their large Ne since their domestication, which started to decline only 100 generations ago, compared to approximately 250 to 500 generations for Bos taurus dairy cattle.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
N. Z. Gebrehiwot ◽  
E. M. Strucken ◽  
H. Aliloo ◽  
K. Marshall ◽  
J. P. Gibson

Abstract Background Humpless Bos taurus cattle are one of the earliest domestic cattle in Africa, followed by the arrival of humped Bos indicus cattle. The diverse indigenous cattle breeds of Africa are derived from these migrations, with most appearing to be hybrids between Bos taurus and Bos indicus. The present study examines the patterns of admixture, diversity, and relationships among African cattle breeds. Methods Data for ~ 40 k SNPs was obtained from previous projects for 4089 animals representing 35 African indigenous, 6 European Bos taurus, 4 Bos indicus, and 5 African crossbred cattle populations. Genetic diversity and population structure were assessed using principal component analyses (PCA), admixture analyses, and Wright’s F statistic. The linkage disequilibrium and effective population size (Ne) were estimated for the pure cattle populations. Results The first two principal components differentiated Bos indicus from European Bos taurus, and African Bos taurus from other breeds. PCA and admixture analyses showed that, except for recently admixed cattle, all indigenous breeds are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. The African zebu breeds had highest proportions of Bos indicus ancestry ranging from 70 to 90% or 60 to 75%, depending on the admixture model. Other indigenous breeds that were not 100% African Bos taurus, ranged from 42 to 70% or 23 to 61% Bos indicus ancestry. The African Bos taurus populations showed substantial genetic diversity, and other indigenous breeds show evidence of having more than one African taurine ancestor. Ne estimates based on r2 and r2adj showed a decline in Ne from a large population at 2000 generations ago, which is surprising for the indigenous breeds given the expected increase in cattle populations over that period and the lack of structured breeding programs. Conclusion African indigenous cattle breeds have a large genetic diversity and are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. This provides a rich resource of potentially valuable genetic variation, particularly for adaptation traits, and to support conservation programs. It also provides challenges for the development of genomic assays and tools for use in African populations.


Author(s):  
R.M. Al-Atiyat ◽  
R.S. Aljumaah ◽  
A.M. Abudabos ◽  
A.A. Alghamdi ◽  
A.S. Alharthi ◽  
...  

SummaryThis study aims to evaluate the current situation and diversity of indigenous cattle breeds in the Kingdom of Saudi Arabia (KSA). A survey was executed in five regions of the KSA. We recorded population sizes, phenotypes and rearing conditions. TaurineBos taurusand zebuBos indicuspopulations were found. The zebu cattle include two breeds; the Hassawi and the Janobi. The Hassawi breed was found in the eastern region and it is in decreasing number. It may become extinct soon in the absence of conservation plan. Janobi remains common with thousand animals in the south-western part of the country. Only one indigenous taurine cow, showing no phenotypic evidence of zebu introgression, was found in the Central region of KSA (Najd Plateau). This cow might be the last pure indigenous Saudi Arabia taurine animal and therefore, the breed is now close to extinction. We advocate the urgency to design conservation plan for the indigenous livestock of the KSA and to complement these with phenotypic as well as genotypic information.


2021 ◽  
Vol 19 (2) ◽  
pp. 103-108
Author(s):  
Neena Amatya Gorkhali ◽  
Chhiring Sherpa ◽  
Aashish Dhakal ◽  
Sanjay Dhungana ◽  
Saroj Sapkota ◽  
...  

Nepalese cattle are known for their genetic potentiality concerning inhabitant in extreme climatic conditions, surviving in the scarce food supply, and resistant to several diseases. We aimed to assess Nepal’s ancestral origin and genetic diversity of indigenous cattle breeds based on hyper-variable D loop mtDNA sequences. Three cattle breeds (Siri, Achammi, & Lulu) comprising the total sample population (n= 75) were employed in the study where the mt DNA information of two breeds (Achammi & Lulu) were retrieved from the published source. Hyper-variable D loop (910bp) of Siri cattle was PCR amplified and sequenced. This study claims that the possible ancestral origin of Bos taurus and Bos indicus mtDNA lineage in the Nepalese cattle population is majorly influenced by China and India, respectively. This study suggests that Nepalese cattle can be divided into two major groups: Bos taurus and Bos indicus, where most of the cattle population was of Bos indicus origin. The sampled population can be classified into three significant haplogroups: T3 (25%), I1 (48%), and I2 (27%) revealing a higher genetic diversity among the Nepalese cattle population. Only T3 taurine haplogroup was found in the sampled population. It was consistent with the fact that the absence of T1 haplogroup in North-East Asian cattle. In terms of Bos indicus, the I1 haplogroup was dominant over I2. Higher genetic diversity can be appropriate reasoning for Nepalese cattle’s survival in a harsh environment and low food conditions.


2011 ◽  
Vol 82 (6) ◽  
pp. 717-721 ◽  
Author(s):  
Makoto KANEDA ◽  
Bang Zhong LIN ◽  
Shinji SASAZAKI ◽  
Kenji OYAMA ◽  
Hideyuki MANNEN

Author(s):  
A. S. Kramarenko

The Southern Meat cattle is a composite breed developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local the Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. Genetic structure of the Southern meat cattle breed from the State Enterprise Experimental Farm “Askaniyske” NAAS Ukraine (Kherson region) were investigated based on the microsatellite DNA loci. Analysis included 192 animals. A panel of 12 bovine-specific microsatellite markers (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH3, ETH225 and BM1824), recommended of the ISAG for cattle genetic diversity studies, was selected for genetic characterization and revealing the extent of genetic diversity in the Southern Meat cattle breed. Genomic DNA was extracted from tissue samples using Nexttec column (Nexttec Biotechnology GmbH, Germany) following the manufacturer's instructions. All laboratory tests were conducted in the laboratory of Molecular Genetics, Animal Center of Biotechnology and Molecular Diagnostics, All-Russian Research Institute for Animal Husbandry named after academy member L.K. Ernst. We report the distribution and the frequency of a taurine and an indicine specific alleles in the Southern Meat cattle breed using literature data about the Zebu and different cattle breeds genetic structure based on microsatellite loci from our list. It can be assumed that the TGLA22777, BM2113141-143, ETH10209-211, TGLA122149, INRA23194-198, TGLA126123, ETH225156-158-160 alleles among the Southern Meat cattle breed examined individuals were inherited from a B. indicus ancestor. On the other hand, the TGLA53156, ETH10217-219, TGLA122143, INRA23202, TGLA126115, ETH225148-150, BM1824188-190 alleles in the Southern Meat cattle gene pool may be inherited from a B. taurus ancestor (i.e., taurine breeds diagnostic alleles).


2019 ◽  
Vol 62 (1) ◽  
pp. 325-333 ◽  
Author(s):  
Linjun Yan ◽  
Yifan She ◽  
Mauricio A. Elzo ◽  
Chunlei Zhang ◽  
Xingtang Fang ◽  
...  

Abstract. The objective of this research was to characterize the genetic diversity and phylogenetic diversity among 12 cattle breeds (10 Chinese breeds and two foreign taurine breeds as controls) utilizing gene mtDNA 16S rRNA. The complete sequences of the mtDNA 16S rRNA genes of the 251 animals were 1570 bp long. The mean percentages of the four nitrogen bases were 37.8 % for adenine (A), 23.7 % for thymine (T), 20.9 % for cytosine (C), and 17.6 % for guanine (G). The mtDNA 16S rRNA gene base percentages had a strong bias towards A + T. All detected nucleotide variations in gene mtDNA 16S rRNA were either transitions (62.3 %) or transversions (37.7 %); no indels (insertions and deletions) were found. A total of 40 haplotypes were constructed based on these mutations. A total of 36 haplotypes of these 40 haplotypes were present in 10 Chinese cattle breeds. The haplotype diversity of all Chinese cattle populations was 0.903±0.077, while the nucleotide diversity was 0.0071±0.0039. Kimura's two-parameter genetic distances between pairs of the studied 12 breeds ranged from 0.001 to 0.010. The phylogenetic analysis assigned the 10 Chinese breeds to two distinct lineages that likely differed in their percentage of Bos taurus and Bos indicus ancestry.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3574
Author(s):  
Roel Meyermans ◽  
Wim Gorssen ◽  
Nadine Buys ◽  
Steven Janssens

Genetic diversity is increasingly important for researchers and society. Small and local populations deserve more attention especially, as they may harbor important characteristics. Moreover, small populations are at greater risk and their genetic management is often more challenging. Likewise, European red cattle populations are threatened, as they are outcompeted by more specialized cattle breeds. In this study, we investigate the genetic diversity of two local Belgian red cattle breeds: Belgian Red and Belgian White Red cattle. A total of 270 animals were genotyped via medium density SNP arrays. Genetic diversity was assessed using runs of homozygosity screening, effective population size estimation and Fst analyses. Genomic inbreeding coefficients based on runs of homozygosity were estimated at 7.0% for Belgian Red and 6.1% for Belgian White Red cattle, and both populations had a low effective population size (68 and 86, respectively). PCA, Fst and admixture analyses revealed the relationship to 52 other international breeds, where they were closest related to some Belgian, French, Scandinavian and Dutch breeds. Moreover, Fst analyses revealed for Belgian Red cattle a signature of selection on BTA6, adjacent to the KIT gene. This study gains important knowledge on the genetic diversity of these two small local red cattle breeds, and will aid in their (genetic) management.


Author(s):  
Ashish Ranjan ◽  
K. Raja ◽  
Ranjana Sinha ◽  
I. Ganguly ◽  
I. Gupta ◽  
...  

Present study was conducted on 50 bulls and 40 male calves of Sahiwal, Tharparkar and Karan Fries cattle maintained at ABRC and LRC, NDRI Karnal (Haryana) to characterize and identify genetic polymorphisms in TNP1 gene. A total of 1568 bp region of TNP-1 gene includes 490 bp of promoter region and two exon and one intron was sequenced and characterized in Bos indicus cattle breeds which are widely distributed in Indian sub-continent. Four sets of primers for TNP1 gene on the basis of Bos Taurus sequence (Acc. No- BK_006511) were designed using Primer3 software and PCR products of 487, 450, 455 and 250 bp were obtained. Amplicons were custom sequenced and subjected to Clustal W analysis which showed no nucleotide changes in coding region and non coding region in Indian cattle breeds as compared to Bos taurus. The 490 bp of promoter region was subjected to transcription factor binding site. Three TATA boxes and two CAAT boxes were identified in the studied fragment. Analysis of SNP was performed using restriction fragment length polymorphism (PCR-RFLP), to detect nucleotide changes in the sequence as reported (g.528G>A, SS1388116558) in Chinese Holstein breed. No polymorphisms were found for tested SNP. Only one genotype GG indicates the absence of variability in the sampled population.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246497
Author(s):  
Vandana Manomohan ◽  
Ramasamy Saravanan ◽  
Rudolf Pichler ◽  
Nagarajan Murali ◽  
Karuppusamy Sivakumar ◽  
...  

The present study is the first comprehensive report on diversity, population structure, genetic admixture and mitochondrial DNA variation in South Indian draught type zebu cattle. The diversity of South Indian cattle was moderately high. A significantly strong negative correlation coefficient of -0.674 (P<0.05) was observed between the effective population size of different breeds and their estimated FIS. The genetic structure analysis revealed the distinctness of Kangayam, Vechur and Punganur cattle from the rest of the zebu breeds. The results showed the influence of Hallikar breed in the development of most Mysore type cattle breeds of South India with the exception of Kangayam. Bayesian clustering analysis was performed to assess the taurine admixture in South Indian zebu cattle using purebred Jersey and Holstein-Friesian as reference genotypes. Relatively high levels of taurine admixture (>6.25%) was observed in Punganur, Vechur, Umblachery and Pulikulam cattle breeds. Two major maternal haplogroups, I1 and I2, typical of zebu cattle were observed, with the former being predominant than the later. The pairwise differences among the I2 haplotypes of South Indian cattle were relatively higher than West Indian (Indus valley site) zebu cattle. The results indicated the need for additional sampling and comprehensive analysis of mtDNA control region variations to unravel the probable location of origin and domestication of I2 zebu lineage. The present study also revealed major concerns on South Indian zebu cattle (i) risk of endangerment due to small effective population size and high rate of inbreeding (ii) lack of sufficient purebred zebu bulls for breeding and (iii) increasing level of taurine admixture in zebu cattle. Availability of purebred semen for artificial insemination, incorporation of genomic/molecular information to identify purebred animals and increased awareness among farmers will help to maintain breed purity, conserve and improve these important draught cattle germplasms of South India.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20192613 ◽  
Author(s):  
Elisa G. Dierickx ◽  
Simon Yung Wa Sin ◽  
H. Pieter J. van Veelen ◽  
M. de L. Brooke ◽  
Yang Liu ◽  
...  

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


Sign in / Sign up

Export Citation Format

Share Document