scholarly journals Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Xie ◽  
Tieming Ji ◽  
Marco A. R. Ferreira ◽  
Yahan Li ◽  
Bhaumik N. Patel ◽  
...  

Abstract Background High-throughput sequencing experiments, which can determine allele origins, have been used to assess genome-wide allele-specific expression. Despite the amount of data generated from high-throughput experiments, statistical methods are often too simplistic to understand the complexity of gene expression. Specifically, existing methods do not test allele-specific expression (ASE) of a gene as a whole and variation in ASE within a gene across exons separately and simultaneously. Results We propose a generalized linear mixed model to close these gaps, incorporating variations due to genes, single nucleotide polymorphisms (SNPs), and biological replicates. To improve reliability of statistical inferences, we assign priors on each effect in the model so that information is shared across genes in the entire genome. We utilize Bayesian model selection to test the hypothesis of ASE for each gene and variations across SNPs within a gene. We apply our method to four tissue types in a bovine study to de novo detect ASE genes in the bovine genome, and uncover intriguing predictions of regulatory ASEs across gene exons and across tissue types. We compared our method to competing approaches through simulation studies that mimicked the real datasets. The R package, BLMRM, that implements our proposed algorithm, is publicly available for download at https://github.com/JingXieMIZZOU/BLMRM. Conclusions We will show that the proposed method exhibits improved control of the false discovery rate and improved power over existing methods when SNP variation and biological variation are present. Besides, our method also maintains low computational requirements that allows for whole genome analysis.

2016 ◽  
Vol 26 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Gregory A. Moyerbrailean ◽  
Allison L. Richards ◽  
Daniel Kurtz ◽  
Cynthia A. Kalita ◽  
Gordon O. Davis ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Joseph Tomlinson ◽  
Shawn W. Polson ◽  
Jing Qiu ◽  
Juniper A. Lake ◽  
William Lee ◽  
...  

AbstractDifferential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.


Genetics ◽  
2013 ◽  
Vol 195 (3) ◽  
pp. 1157-1166 ◽  
Author(s):  
Sandrine Lagarrigue ◽  
Lisa Martin ◽  
Farhad Hormozdiari ◽  
Pierre-François Roux ◽  
Calvin Pan ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 753
Author(s):  
Miroslav Glasa ◽  
Richard Hančinský ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Jana Tomašechová ◽  
...  

In recent years, high throughput sequencing (HTS) has brought new possibilities to the study of the diversity and complexity of plant viromes. Mixed infection of a single plant with several viruses is frequently observed in such studies. We analyzed the virome of 10 tomato and sweet pepper samples from Slovakia, all showing the presence of potato virus Y (PVY) infection. Most datasets allow the determination of the nearly complete sequence of a single-variant PVY genome, belonging to one of the PVY recombinant strains (N-Wi, NTNa, or NTNb). However, in three to-mato samples (T1, T40, and T62) the presence of N-type and O-type sequences spanning the same genome region was documented, indicative of mixed infections involving different PVY strains variants, hampering the automated assembly of PVY genomes present in the sample. The N- and O-type in silico data were further confirmed by specific RT-PCR assays targeting UTR-P1 and NIa genomic parts. Although full genomes could not be de novo assembled directly in this situation, their deep coverage by relatively long paired reads allowed their manual re-assembly using very stringent mapping parameters. These results highlight the complexity of PVY infection of some host plants and the challenges that can be met when trying to precisely identify the PVY isolates involved in mixed infection.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (11) ◽  
pp. e1007690
Author(s):  
Sofie Y. N. Delbare ◽  
Andrew G. Clark

Sign in / Sign up

Export Citation Format

Share Document