scholarly journals Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Clemens Falker-Gieske ◽  
Hanna Iffland ◽  
Siegfried Preuß ◽  
Werner Bessei ◽  
Cord Drögemüller ◽  
...  

Abstract Background Feather pecking (FP) is damaging behavior in laying hens leading to global economic losses in the layer industry and massive impairments of animal welfare. The objective of the study was to discover genetic variants and affected genes that lead to FP behavior. To achieve that we imputed low-density genotypes from two different populations of layers divergently selected for FP to sequence level by performing whole genome sequencing on founder and half-sib individuals. In order to decipher the genetic structure of FP, genome wide association studies and meta-analyses of two resource populations were carried out by focusing on the traits ‘feather pecks delivered’ (FPD) and the ‘posterior probability of a hen to belong to the extreme feather pecking subgroup’ (pEFP). Results In this meta-analysis, we discovered numerous genes that are affected by polymorphisms significantly associated with the trait FPD. Among them SPATS2L, ZEB2, KCHN8, and MRPL13 which have been previously connected to psychiatric disorders with the latter two being responsive to nicotine treatment. Gene set enrichment analysis revealed that phosphatidylinositol signaling is affected by genes identified in the GWAS and that the Golgi apparatus as well as brain structure may be involved in the development of a FP phenotype. Further, we were able to validate a previously discovered QTL for the trait pEFP on GGA1, which contains variants affecting NIPA1, KIAA1211L, AFF3, and TSGA10. Conclusions We provide evidence for the involvement of numerous genes in the propensity to exhibit FP behavior that could aid in the selection against this unwanted trait. Furthermore, we identified variants that are involved in phosphatidylinositol signaling, Golgi metabolism and cell structure and therefore propose changes in brain structure to be an influential factor in FP, as already described in human neuropsychiatric disorders.

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 26-OR
Author(s):  
K. ALAINE BROADAWAY ◽  
XIANYONOG YIN ◽  
ALICE WILLIAMSON ◽  
EMMA WILSON ◽  
MAGIC INVESTIGATORS

Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
James S Floyd ◽  
Colleen Sitlani ◽  
Christy L Avery ◽  
Eric A Whitsel ◽  
Leslie Lange ◽  
...  

Introduction: Sulfonylureas are a commonly-used class of diabetes medication that can prolong the QT-interval, which is a leading cause of drug withdrawals from the market given the possible risk of life-threatening arrhythmias. Previously, we conducted a meta-analysis of genome-wide association studies of sulfonylurea-genetic interactions on QT interval among 9 European-ancestry (EA) cohorts using cross-sectional data, with null results. To improve our power to identify novel drug-gene interactions, we have included repeated measures of medication use and QT interval and expanded our study to include several additional cohorts, including African-American (AA) and Hispanic-ancestry (HA) cohorts with a high prevalence of sulfonylurea use. To identify potentially differential effects on cardiac depolarization and repolarization, we have also added two phenotypes - the JT and QRS intervals, which together comprise the QT interval. Hypothesis: The use of repeated measures and expansion of our meta-analysis to include diverse ancestry populations will allow us to identify novel pharmacogenomic interactions for sulfonylureas on the ECG phenotypes QT, JT, and QRS. Methods: Cohorts with unrelated individuals used generalized estimating equations to estimate interactions; cohorts with related individuals used mixed effect models clustered on family. For each ECG phenotype (QT, JT, QRS), we conducted ancestry-specific (EA, AA, HA) inverse variance weighted meta-analyses using standard errors based on the t-distribution to correct for small sample inflation in the test statistic. Ancestry-specific summary estimates were combined using MANTRA, an analytic method that accounts for differences in local linkage disequilibrium between ethnic groups. Results: Our study included 65,997 participants from 21 cohorts, including 4,020 (6%) sulfonylurea users, a substantial increase from the 26,986 participants and 846 sulfonylureas users in the previous meta-analysis. Preliminary ancestry-specific meta-analyses have identified genome-wide significant associations (P < 5х10–8) for each ECG phenotype, and analyses with MANTRA are in progress. Conclusions: In the setting of the largest collection of pharmacogenomic studies to date, we used repeated measurements and leveraged diverse ancestry populations to identify new pharmacogenomic loci for ECG traits associated with cardiovascular risk.


Author(s):  
A. J. Agopian ◽  
Elizabeth Goldmuntz ◽  
Hakon Hakonarson ◽  
Anshuman Sewda ◽  
Deanne Taylor ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Michal Marczyk ◽  
Agnieszka Macioszek ◽  
Joanna Tobiasz ◽  
Joanna Polanska ◽  
Joanna Zyla

A typical genome-wide association study (GWAS) analyzes millions of single-nucleotide polymorphisms (SNPs), several of which are in a region of the same gene. To conduct gene set analysis (GSA), information from SNPs needs to be unified at the gene level. A widely used practice is to use only the most relevant SNP per gene; however, there are other methods of integration that could be applied here. Also, the problem of nonrandom association of alleles at two or more loci is often neglected. Here, we tested the impact of incorporation of different integrations and linkage disequilibrium (LD) correction on the performance of several GSA methods. Matched normal and breast cancer samples from The Cancer Genome Atlas database were used to evaluate the performance of six GSA algorithms: Coincident Extreme Ranks in Numerical Observations (CERNO), Gene Set Enrichment Analysis (GSEA), GSEA-SNP, improved GSEA for GWAS (i-GSEA4GWAS), Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA), and Over-Representation Analysis (ORA). Association of SNPs to phenotype was calculated using modified McNemar’s test. Results for SNPs mapped to the same gene were integrated using Fisher and Stouffer methods and compared with the minimum p-value method. Four common measures were used to quantify the performance of all combinations of methods. Results of GSA analysis on GWAS were compared to the one performed on gene expression data. Comparing all evaluation metrics across different GSA algorithms, integrations, and LD correction, we highlighted CERNO, and MAGENTA with Stouffer as the most efficient. Applying LD correction increased prioritization and specificity of enrichment outcomes for all tested algorithms. When Fisher or Stouffer were used with LD, sensitivity and reproducibility were also better. Using any integration method was beneficial in comparison with a minimum p-value method in specific combinations. The correlation between GSA results from genomic and transcriptomic level was the highest when Stouffer integration was combined with LD correction. We thoroughly evaluated different approaches to GSA in GWAS in terms of performance to guide others to select the most effective combinations. We showed that LD correction and Stouffer integration could increase the performance of enrichment analysis and encourage the usage of these techniques.


2017 ◽  
Author(s):  
Lloyd T. Elliott ◽  
Kevin Sharp ◽  
Fidel Alfaro-Almagro ◽  
Sinan Shi ◽  
Karla Miller ◽  
...  

SummaryThe genetic basis of brain structure and function is largely unknown. We carried out genome-wide association studies of 3,144 distinct functional and structural brain imaging derived phenotypes in UK Biobank (discovery dataset 8,428 subjects). We show that many of these phenotypes are heritable. We identify 148 clusters of SNP-imaging associations with lead SNPs that replicate at p<0.05, when we would expect 21 to replicate by chance. Notable significant and interpretable associations include: iron transport and storage genes, related to changes in T2* in subcortical regions; extracellular matrix and the epidermal growth factor genes, associated with white matter micro-structure and lesion volume; genes regulating mid-line axon guidance development associated with pontine crossing tract organisation; and overall 17 genes involved in development, pathway signalling and plasticity. Our results provide new insight into the genetic architecture of the brain with relevance to complex neurological and psychiatric disorders, as well as brain development and aging. The full set of results is available on the interactive Oxford Brain Imaging Genetics (BIG) web browser.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabricio Almeida-Silva ◽  
Thiago M. Venancio

AbstractSoybean is one of the most important legume crops worldwide. However, soybean yield is dramatically affected by fungal diseases, leading to economic losses of billions of dollars yearly. Here, we integrated publicly available genome-wide association studies and transcriptomic data to prioritize candidate genes associated with resistance to Cadophora gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina phaseolina, and Phakopsora pachyrhizi. We identified 188, 56, 11, 8, and 3 high-confidence candidates for resistance to F. virguliforme, F. graminearum, C. gregata, M. phaseolina and P. pachyrhizi, respectively. The prioritized candidate genes are highly conserved in the pangenome of cultivated soybeans and are heavily biased towards fungal species-specific defense responses. The vast majority of the prioritized candidate resistance genes are related to plant immunity processes, such as recognition, signaling, oxidative stress, systemic acquired resistance, and physical defense. Based on the number of resistance alleles, we selected the five most resistant accessions against each fungal species in the soybean USDA germplasm. Interestingly, the most resistant accessions do not reach the maximum theoretical resistance potential. Hence, they can be further improved to increase resistance in breeding programs or through genetic engineering. Finally, the coexpression network generated here is available in a user-friendly web application (https://soyfungigcn.venanciogroup.uenf.br/) and an R/Shiny package (https://github.com/almeidasilvaf/SoyFungiGCN) that serve as a public resource to explore soybean-pathogenic fungi interactions at the transcriptional level.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Myriam Fornage ◽  
Daokun Sun ◽  
Melissa A Richard ◽  
Solomon K Musani ◽  
Yun Ju Sung ◽  
...  

Background: Genome-wide association studies (GWAS) have identified hundreds of genetic loci for blood pressure (BP) traits and advanced our understanding of BP regulation and hypertension etiology. Psychological and social factors are known to influence BP and risk of cardiovascular diseases. Accounting for psychosocial factors may help identify BP loci and extend our knowledge of its genetic architecture. Methods: To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptomatology, trait anxiety, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. Results: In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response ( PLCL2 ), synaptic function and neurotransmission ( LIN7A, PFIA2 ), as well as genes previously implicated in neuropsychiatric or stress-related disorders ( FSTL5, CHODL ). Conclusion: These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.


Sign in / Sign up

Export Citation Format

Share Document